128 private links
Deep Learning has shown very promising results in the field of Computer Vision. But when applying it to practical domains such as medical imaging, lack of labeled data is a major challenge.
In practical settings, labeling data is a time consuming and expensive process. Though, you have a lot of images, only a small portion of them can be labeled due to resource constraints. In such settings, how can we leverage the remaining unlabeled images along with the labeled images to improve the performance of our model? The answer is semi-supervised learning.
FixMatch is a recent semi-supervised approach by Sohn et al. from Google Brain that improved the state of the art in semi-supervised learning(SSL). It is a simpler combination of previous methods such as UDA and ReMixMatch. In this post, we will understand the concept of FixMatch and also see how it got 78% median accuracy and 84% maximum accuracy on CIFAR-10 with just 10 labeled images.