
Introduction Bug algorithms Potential fields

Robotics
Robot Navigation (1)

Tullio Facchinetti
<tullio.facchinetti@unipv.it>

Tuesday 3rd October, 2023

http://robot.unipv.it/toolleeo

Introduction Bug algorithms Potential fields

Robot navigation

Robot navigation

Robot’s ability to determine its own position in its frame of
reference and then to plan a path towards some goal location.

Source: Wikipedia

sub-problems to address:
• localization

• path planning

• mapping

Introduction Bug algorithms Potential fields

Problems to address

localization
• determination of the current robot configuration/position

path planning
• find a collision-free path to move from a starting configuration
to a destination configuration

mapping
• environment exploration to build a map of the configuration
space; useful for path planning, coverage and localization

Introduction Bug algorithms Potential fields

Example applications requiring navigation

manipulation and grasping
• manufacturing

• tele-medicine (e.g. remote surgery)

assembly planning
• manufacturing

• coverage: let a sensor or an actuator to cover the working
space

• special interventions (e.g. space stations)

multi-robot coordination
• object transportation

• improvement in area coverage

• wireless connectivity preservation

Introduction Bug algorithms Potential fields

Basic terminology

system
• set of particles composing the moving object (the robot)

configuration
• the position of each point composing the system

configuration space
• set of all the possible configurations

degree of freedom
• the dimension of the configuration space

Introduction Bug algorithms Potential fields

Obstacles and free space

working space
• working space W

• the i-th obstacle is denoted as WOi

• the free space is Wfree = W \ (
⋃

i WOi)

configuration space
• configuration space Q

• R(q) : points occupied by the robots at configuration q

• the i-th obstacle is denoted as QOi

• the free configuration space is Qfree = Q\ (
⋃

i QOi)

Introduction Bug algorithms Potential fields

Configuration space: an example

0
0

configuration space of a two-arm robot moving in the
2-dimensional plane

Introduction Bug algorithms Potential fields

Path planning with obstacles: modeling

0
0

'
''

' ''

• ϕ1, ϕ2 ∈ [0, π]

• an obstacle in the working space corresponds to a set of
non-allowed configurations in the configuration space (the
above is a sub-set that is easy to draw by hand)

Introduction Bug algorithms Potential fields

Configuration space with obstacles: an example

changing the obstacle radius

Introduction Bug algorithms Potential fields

Configuration space with obstacles: an example

changing the link length

Introduction Bug algorithms Potential fields

Path planning: lesson learned

the configuration of a robot can be represented as
one point in a n-dimensional configuration space

• the value of n depends on the mechanical structure of the
robot (degree of freedom)

• the representation of an obstacle in the configuration space
depends both on the shape of the object AND the structure
of the robot

the motion of a complex robot (several degrees of freedom) in
the working space is mapped into the motion of one point in a

complex (several dimensions) configuration space

Introduction Bug algorithms Potential fields

Path planning: the goal

the goal of the path planning is to let a point move
in the configuration space

• the movement goes from a starting point qstart to a
destination point qgoal

• configurations QOi are present in the configuration space that
are not allowed

• an obstacle in the operating space is associated with
configurations that are not allowed in the configuration space

• the path planning shall avoid obstacles

Introduction Bug algorithms Potential fields

Path planning: example

the motion of a point in the
configuration space is associated
with the motion of an arm in the
workspace

Introduction Bug algorithms Potential fields

The path/trajectory planning

Path

A continuous curve in the configuration space

Trajectory

A continuous curve in the configuration space parameterized by
time

in the remainder, the focus will be on path planning, thus the term
“navigation” will be (mostly) restricted to that topic

Introduction Bug algorithms Potential fields

The path/trajectory planning

path

c : [0, 1] → Q

where

• c(0) = qstart , and

• c(1) = qgoal , and

• c(s) ∈ Qfree∀s ∈ [0, 1]
c(0)

c(1)

c(0.5)

c(0.6)

when c is parametrized by t it becomes a trajectory

Introduction Bug algorithms Potential fields

Properties of a path planning algorithm

optimality: is it the best algorithm?

Performance evaluation can be based on: path length, required
time, consumed energy

path 1

path 2
path 3

start goal

time t1
to travel
this distance

time t2
to travel
a corner

1 Li = length(path i)

2 L1 = L2 < L3
3 Ni = corners(path i)

4 N1 > N2 = N3 (7 > 1 = 1)

5 Ti = time(path i)

6 T2 < T3,T2 < T1,T1 ? T3

While the comparison among lengths is straigthforward, the
comparison among times depends from the time t1 to cover the
straight lines and the time t2 to handle the corners

Introduction Bug algorithms Potential fields

Properties of a path planning algorithm

computational complexity:
(how long does it take to find a path?)

• constant, polynomial or exponential complexity as a function
of the problem size

• the problem size can be expressed in terms of degree of
freedom, number of obstacles, etc.

• evaluate the average complexity and the worst case complexity

Introduction Bug algorithms Potential fields

Complexity: example

an algorithm requires 50 ms to execute the instruction that
processes 1 single datum

supposing that we have 50 data to process, the required time is:

• O(1): e.g. 80 ms, which does not depend on the number of
data

• O(log n): in the order of 195.6 ms

• O(n): in the order of 2.5 sec

• O(n3): in the order of 125 sec

• O(2n): in the order of 1.12× 1012 sec, i.e., 35.702.000 year

Introduction Bug algorithms Potential fields

Properties of a path planning algorithm

completeness
• a complete algorithm finds a solution if one exists

• resolution completeness: a solution can be found only above a
given resolution of the problem representation

• probabilistic completeness: the probability p to find a solution
tends to 100% as t → ∞

optimality, completeness and complexity are
trade-off parameters

e.g. the complexity may increase if optimality or completeness is
required

Introduction Bug algorithms Potential fields

Offline/online execution

offline
• given all the necessary information, a path is calculated in
advance

• later, the robot will follow the pre-computed path

• the environment must be known in advance to obtain a
correct/safe/reliable path

online
• the path is generated while the robot is moving

• the information required for the navigation are collected
during the motion (i.e., online), using the information
gathered by sensors

• do not require the a-priori knowledge of the environment

Introduction Bug algorithms Potential fields

Two-dimensional motion: the bugs algorithms

a family of 3 algorithms based
on similar strategies

features:
• designed to manage the presence of obstacles

• work for 2-dimensional configuration spaces

• do not work for higher dimensional spaces

requirements:
• self localization (can use maps, GPS, etc.)

• coordinates of the start and destination points

• proximity sensing

Introduction Bug algorithms Potential fields

Bugs algorithms

complete algorithms: a solution is found, if one exists

combination of 2 motion strategies:
• motion-to-goal: move towards the goal point

• boundary-following: run along the border of an obstacle

Introduction Bug algorithms Potential fields

Bug 1

essentials:
• motion-to-goal until an obstacle is detected (hit point)

• complete circumnavigation of the obstacle to find the point
pLi closest to the goal (leave point)

• return to pLi along the shortest path and back to
motion-to-goal

WO i

p
goal

p
start

p
i

H

p
i

L

Introduction Bug algorithms Potential fields

Bug 1 pseudo-code

i = 1
pL
i−1 = pstart

while forever do
repeat

move from pL
i−1 to pgoal

until (pgoal is reached → path found) or (WOi encountered in pH
i)

select a direction (left or right)
repeat

follow the boundary of WOi

until (pgoal is reached → path found) or (pH
i is encountered)

determine the closest point pL
i ∈ ∂WOi to pgoal

boundary following towards pL
i , along the shortest path

move towards the goal
if WOi is encountered then

pgoal is not reachable
stop

end if
i = i + 1

end while

Introduction Bug algorithms Potential fields

Bug 1: no path to goal

example where a path to goal
can not be found

p
start

p
goal

p
i

H

p
i

L

WO i

Introduction Bug algorithms Potential fields

Bug 1: proof of completeness

an algorithm is complete if, in finite time, it finds a path if such
a path exists or terminates with failure if it does not

suppose Bug 1 were incomplete

this means that

• there is a path from start to goal

• by assumption, it has finite length, and intersects obstacles a
finite number of times

• Bug 1 does not find it

either it spends an infinite amount of time looking for the goal
(it never terminates), or
it terminates incorrectly (determines that there are not paths
to goal)

Introduction Bug algorithms Potential fields

Bug 1: proof of completeness

suppose it never terminates
• but each leave point is closer to pgoal than corresponding hit

point

• each hit point is closer than the previous leave point

• thus, there are a finite number of hit/leave pairs

• after exhausting them, the robot will proceed to the goal and
terminate

Introduction Bug algorithms Potential fields

Bug 1: proof of completeness

suppose it terminates with no path found
(incorrectly)

• then, the closest point after a hit must be a leave point where
the robot would have to move into the obstacle

• but, then line from robot to goal must intersect the object an
even number of times (Jordan curve theorem)

• but then there is another intersection point on the boundary
that is closer to the goal

• since we assumed there is a path, we must have crossed this
point on the boundary, which contradicts the above
assumption about the leave point

Introduction Bug algorithms Potential fields

Bug 2

essentials:
• motion-to-goal until an obstacle is encountered

• obstacle circumnavigation until the r straight line is
encountered in a point that is closer to the goal than the
previous hit point

the r straight line is the line passing through the starting point
and the goal

• at that point, back to motion-to-goal along the r straight line

r

p
goal

p
start

p
i

H

p
i

L

WO i

Introduction Bug algorithms Potential fields

Bug 2: pseuso-code

i = 1
pL
i−1 = pstart

while forever do
repeat

move from pL
i−1 to pgoal

until (pgoal is reached → path found) or (WOi encountered in pH
i)

select a direction (left or right)
repeat

follow the boundary of WOi

until (pgoal is reached → path found) or
(pH

i is encountered again → no path exists) or
r is crossed in point m such that
m ̸= pH

i (the robot did not get back to the hit point)
d(m, pgoal) < d(pH

i , pgoal) (the robot got closer to the goal)
if the robot moves towards pgoal it does not encounter an obstacle

set pL
i = m

i = i + 1
end while

Introduction Bug algorithms Potential fields

Bug 2: no path to goal

example where no path exists
connecting the starting point and the goal

p
start

WO i p
goal

p
i

L

p
i

H

Introduction Bug algorithms Potential fields

Bug 2: odd condition

p
start

p
goal

p
i

H

p
i

L

WO i • may this situation happen?

• if not, which is the condition that
prevents it?

• when r is intersected during the
boundary following, the path goes
down r only if the intersection
point is closer to the goal than the
hit point

• when in motion-to-goal (i.e.,
moving along r), the point never
goes in a direction that takes it
farther from the goal

Introduction Bug algorithms Potential fields

Bug 1 and 2: performance comparison

performance indicator: path length

which is the method that achieves the shortest
path in the worst-case?

(qualitative observations)

• Bug 1 always goes through the entire perimeter oi of the i-th
obstacle once

instead...

• Bug 2 may cross the straight line r several (ni) times for the
i-th obstacle

• this fact may lead to cover the obstacle perimeter oi several
times

Introduction Bug algorithms Potential fields

Bug 2: example of bad case

p
start

WO i

p
i

H

p
goal

p
i

L

• the r straight line can intersect ni times the boundary of the
i-th obstacle

• therefore, there are ni/2 pairs of hit/leave points

• in the worst case, this leads to cover many times the same
parts of the perimeter

Introduction Bug algorithms Potential fields

Performance comparison

a more accurare comparison of the worst case can
be done considering that n obstacles are

encountered by both algorithms

path length generated by Bug 1:

Lbug1 ≤ d(pstart, pgoal) + 1.5
n∑

i=1

oi

path length generated by Bug 2:

Lbug2 ≤ d(pstart, pgoal) +
1

2

n∑
i=1

nioi

Introduction Bug algorithms Potential fields

Performance comparison

• in the worst case, the path generated by Bug 2 may quickly
increase

• with Bug 2, the path length depends on how many times an
obstacle is crossed by the r straight line

• an obstacle can be arbitrary complex, such that it is crossed
by r an high number of times

• the performance of the algorithm strongly depends from the
complexity of the environment

Introduction Bug algorithms Potential fields

Two approaches, different features

Bug 1 and Bug 2 implement two common
approaches available in operational research

• Bug 1 performs an exaustive research to (locally) find the
optimal leave point

• Bug 2 uses heuristic research to limit the search time

• the heuristic adopted by Bug 2 is said greedy, i.e., the first
option that promise good results is selected

as a consequence:
• Bug 2 provides good performance in case of simple obstacles

• generally, Bug 1 performs better in case of complex scenarios

Introduction Bug algorithms Potential fields

A model for a range sensor

• the distance is given by the function ρ : R2 × S1 → R
• given a position x ∈ R2 and an orientation θ ∈ S1, the
function is

ρ(x , θ) = min
λ∈[0,∞]

d(x , x + λ[cos θ, sin θ]T)

such that x + λ[cos θ, sin θ]T ∈
⋃
i

WOi

Introduction Bug algorithms Potential fields

Discontinuity of ρ

points of discontinuity of the ρ function are
especially relevant: they indicate the presence of a

passage between two obstacles

• a continuity interval is defined as a connected interval
x + ρ(x , θ)[cos θ, sin θ] such that ρ(x , θ) is finite and
continuous w.r.t. θ

• the limits of continuity intervals compose the set Oi

Introduction Bug algorithms Potential fields

Example of sensor with infinite sensing range

O1

O2

O10

O3

O4O5

O6

O7

O8

O9

connected interval x + ρ(x , θ)[cos θ, sin θ]
such that ρ(x , θ) is finite and continuous w.r.t. θ

Introduction Bug algorithms Potential fields

Model of a real range sensor

• a real range sensor has a finite sensing range

• being R the sensing range, the function ρR : R2 × S1 → R is
said saturated distance

ρR(x , θ) =

{
ρ(x , θ), if ρ(x , θ) < R

∞, otherwise

Introduction Bug algorithms Potential fields

Example of sensor with finite sensing range

O1

O2
O4

O3

O5
O6

O7

O8

O9

O10

O11

O12

Introduction Bug algorithms Potential fields

Tangent Bug

still uses the two motion modes, namely
motion-to-goal and boundary-following

however, differently from Bug 1 and Bug 2:
• in motion-to-goal the robot can run along the obstacle border

• in boundary-following mode the robot may travel without
considering the obstacle border

the names of the strategies may be misleading:
they are only used to identify a motion state

Introduction Bug algorithms Potential fields

Tangent Bug

• during the motion-to-goal the robot moves along the direction
that minimized a cost function, such as d(x ,Oi) + d(Oi , pgoal)

• when a local minimum of the cost function is found, it
switches to the boundary-following mode

• in boundary-following mode 2 values are considered:

dfollowed, which is the minimum distance from the goal
registered during the current boundary-following motion
the value dreach calculated ad follows:

Λ = {y ∈ ∂WOf : λx + (1− λ)y ∈ Qfree∀λ ∈ [0, 1]}

dreach = min
c∈Λ

d(pgoal, c)

• the robot switches back to motion-to-goal when
dreach < dfollowed

Introduction Bug algorithms Potential fields

Tangent Bug

the Tangent Bug algorithm behavior depends on
the sensing range of the range sensor

there are 3 cases:
• range R = 0 (typical of a tactile sensor)

• range R = ∞ (the ideal situation)

• range R > 0 but finite (real range sensor)

Introduction Bug algorithms Potential fields

Tangent Bug with R = 0

goal

start

A

B

• the red line represents the motion-to-goal, while the blue line
indicates the boundary-following

• points A and B indicate two local minima of the cost function

Introduction Bug algorithms Potential fields

Tangent Bug with R = ∞

goal

start

• the red line represents the motion-to-goal, while the blue line
indicates the boundary-following

Introduction Bug algorithms Potential fields

Tangent Bug: comparison between R = 0 and R = ∞

goal

start

A

B

R = 0

goal

start

R = ∞

the higher the sensing range, the better the performance of the
algorithm in terms of length of the generated path

Introduction Bug algorithms Potential fields

Potential fields method

pros
• does not require global information

• works in n-dimensional configuration spaces

• easy to implement and to visualize; this latter improves the
predictability of the motion

• efficient implementation: fields are independent from each
others, each field can be independently computed

• possibility to add custom parameters to tweak the desired
behavior, both at design time and runtime

• the approach can be extended to non-Euclidean spaces

cons
• suffers of the local minima problem

• lack of completeness: may not find a path even if one exists

Introduction Bug algorithms Potential fields

Potential fields and gradient

it is based on a potential field function such as

U(p) : Rn → R

p ∈ Rn is the point where the potential is calculated

the gradient function can be obtained as

∇U(p) = DU(p)T =

[
∂U

∂p1
. . .

∂U

∂pn

]T
physical meaning:

• the potential can be considered as the energy level in the
point p

• its gradient has the features of a force applied on the moving
point when located in p

Introduction Bug algorithms Potential fields

Comparison with a physical system

the point moving in the configuration space can be seen as a
particle moving in a force field, which tends to a state of

minimum energy

Introduction Bug algorithms Potential fields

Comparison with a physical system

the point moving in the configuration space can be seen as a
particle moving in a force field, which tends to a state of

minimum energy

in presence of obstacles:

p
start

p
goal

Introduction Bug algorithms Potential fields

Attraction and repulsion

the overall potential is composed by the sum of 2 components:

U(p) = Uatt(p) + Urep(p)

• the attraction potential Uatt(p) attracts the particle; it is
associated with the goal

• the repulsion potential Urep(p) repulses the particle; it is
associated with obstacles

Introduction Bug algorithms Potential fields

Attraction and repulsion

the force acting on the moving
point is

F (p) = Fatt(p) + Frep(p)

where

Fatt(p) = −∇Uatt(p)

Frep(p) = −∇Urep(p)

Introduction Bug algorithms Potential fields

Example of motion in the potential field

Introduction Bug algorithms Potential fields

Attraction potential

the attraction potential has the following features:

• it must be a monotone function that increases with the
distance from the goal

• as a consequence, it is non-null everywhere but in the goal
point

one of the most trivial function having such features increases
quadratically with the distance from the goal:

Uatt(p) =
1

2
kattd

2(p, pgoal)

Introduction Bug algorithms Potential fields

Attraction potential

the gradient of the attraction potential is

∇Uatt(p) = ∇
(
1

2
kattd

2(p, pgoal)

)
=

1

2
katt∇d2(p, pgoal)

= katt(p − pgoal)

• the gradient converges to 0

• can become arbitrary large if p is far from pgoal

• thresholds can be introduced on the distance to limit its value

Introduction Bug algorithms Potential fields

Repulsion potential

the repulsion potential can be defined as follows:

Urep(p) =

1
2krep

(
1

D(p) −
1
P∗

)2
, if D(p) ≤ P∗

0, if D(p) > P∗

where:

• D(p) is the distance of p from the closest point q of the
closest obstacle

• P∗ is the threshold value that allows to discard obstacles that
are too far

its gradient is

∇Urep(p) =

{
krep

(
1
P∗ − 1

D(p)

)
(p−q)
D3(p)

, if D(p) ≤ P∗

0, if D(p) > P∗

Introduction Bug algorithms Potential fields

The gradient descent

p(0) = pstart
while |∇U(p(i))| > ϵ do

p(i + 1) = p(i) + α∇U(p(i))
i = i + 1

end while

where

• p(i) is the sequence of locations generated by the algorithm

• α is the motion step; while it should not be too large to avoid
“jumping inside” an obstacle, it should not be too short to
limit the execution time

• ϵ is the precision required to match the goal

Introduction Bug algorithms Potential fields

The local minima problem

attraction

sum

the sum of repulsion forces
balances the attraction

repulsion from
obstacle 1

repulsion from
obstacle 2

• The moving point gets stuck due to the balance of attraction
and repulsion forces

• The point can get stuck even if there is a passage between the
obstacles

	Introduction
	Bug algorithms
	Potential fields

