Robotics
 Robot Navigation (1)

Tullio Facchinetti
tullio.facchinetti@unipv.it

Tuesday $3^{\text {rd }}$ October, 2023
http://robot.unipv.it/toolleeo

Robot navigation

Robot navigation

Robot's ability to determine its own position in its frame of reference and then to plan a path towards some goal location. Source: Wikipedia

sub-problems to address:

- localization
- path planning
- mapping

Problems to address

localization

- determination of the current robot configuration/position

path planning

- find a collision-free path to move from a starting configuration to a destination configuration

mapping

- environment exploration to build a map of the configuration space; useful for path planning, coverage and localization

Example applications requiring navigation

manipulation and grasping

- manufacturing
- tele-medicine (e.g. remote surgery)
assembly planning
- manufacturing
- coverage: let a sensor or an actuator to cover the working space
- special interventions (e.g. space stations)
multi-robot coordination
- object transportation
- improvement in area coverage
- wireless connectivity preservation

Basic terminology

system

- set of particles composing the moving object (the robot)

configuration

- the position of each point composing the system
configuration space
- set of all the possible configurations
degree of freedom
- the dimension of the configuration space

Obstacles and free space
working space

- working space W
- the i-th obstacle is denoted as $W O_{i}$
- the free space is $W_{\text {free }}=W \backslash\left(\bigcup_{i} W_{i}\right)$

configuration space

- configuration space Q
- $R(q)$: points occupied by the robots at configuration q
- the i-th obstacle is denoted as $Q O_{i}$
- the free configuration space is $Q_{f r e e}=Q \backslash\left(\bigcup_{i} Q O_{i}\right)$

Configuration space: an example

configuration space of a two-arm robot moving in the 2-dimensional plane

Path planning with obstacles: modeling

- $\phi_{1}, \phi_{2} \in[0, \pi]$
- an obstacle in the working space corresponds to a set of non-allowed configurations in the configuration space (the above is a sub-set that is easy to draw by hand)

Configuration space with obstacles: an example

changing the obstacle radius

Configuration space with obstacles: an example

changing the link length

Path planning: lesson learned

the configuration of a robot can be represented as one point in a n-dimensional configuration space

- the value of n depends on the mechanical structure of the robot (degree of freedom)
- the representation of an obstacle in the configuration space depends both on the shape of the object AND the structure of the robot
the motion of a complex robot (several degrees of freedom) in the working space is mapped into the motion of one point in a complex (several dimensions) configuration space

Path planning: the goal

the goal of the path planning is to let a point move in the configuration space

- the movement goes from a starting point $q_{\text {start }}$ to a destination point $q_{g o a l}$
- configurations $Q O_{i}$ are present in the configuration space that are not allowed
- an obstacle in the operating space is associated with configurations that are not allowed in the configuration space
- the path planning shall avoid obstacles

Path planning: example

the motion of a point in the configuration space is associated with the motion of an arm in the workspace

The path/trajectory planning

Path

A continuous curve in the configuration space

```
Trajectory
A continuous curve in the configuration space parameterized by time
```

in the remainder, the focus will be on path planning, thus the term
"navigation" will be (mostly) restricted to that topic

The path/trajectory planning

path

$$
c:[0,1] \rightarrow Q
$$

where

- $c(0)=q_{\text {start }}$, and
- $c(1)=q_{\text {goal }}$, and
- $c(s) \in Q_{\text {free }} \forall s \in[0,1]$

when c is parametrized by t it becomes a trajectory

Properties of a path planning algorithm
optimality: is it the best algorithm?
Performance evaluation can be based on: path length, required time, consumed energy

(1) $L_{i}=$ length $($ path $i)$
(2) $L_{1}=L_{2}<L_{3}$

- $N_{i}=$ corners(path i)
(1) $N_{1}>N_{2}=N_{3}(7>1=1)$
- $T_{i}=$ time (path $\left.i\right)$
- $T_{2}<T_{3}, T_{2}<T_{1}, T_{1}$? T_{3}

While the comparison among lengths is straigthforward, the comparison among times depends from the time t_{1} to cover the straight lines and the time t_{2} to handle the corners

Properties of a path planning algorithm

computational complexity: (how long does it take to find a path?)

- constant, polynomial or exponential complexity as a function of the problem size
- the problem size can be expressed in terms of degree of freedom, number of obstacles, etc.
- evaluate the average complexity and the worst case complexity

Complexity: example

an algorithm requires 50 ms to execute the instruction that processes 1 single datum
supposing that we have 50 data to process, the required time is:

- $O(1)$: e.g. 80 ms , which does not depend on the number of data
- $O(\log n)$: in the order of 195.6 ms
- $O(n)$: in the order of 2.5 sec
- $O\left(n^{3}\right)$: in the order of 125 sec
- $O\left(2^{n}\right)$: in the order of $1.12 \times 10^{12} \mathrm{sec}$, i.e., 35.702 .000 year

Properties of a path planning algorithm

completeness

- a complete algorithm finds a solution if one exists
- resolution completeness: a solution can be found only above a given resolution of the problem representation
- probabilistic completeness: the probability p to find a solution tends to 100% as $t \rightarrow \infty$

optimality, completeness and complexity are trade-off parameters

e.g. the complexity may increase if optimality or completeness is required

Offline/online execution

offline

- given all the necessary information, a path is calculated in advance
- later, the robot will follow the pre-computed path
- the environment must be known in advance to obtain a correct/safe/reliable path
online
- the path is generated while the robot is moving
- the information required for the navigation are collected during the motion (i.e., online), using the information gathered by sensors
- do not require the a-priori knowledge of the environment

Two-dimensional motion: the bugs algorithms
a family of 3 algorithms based on similar strategies

features:

- designed to manage the presence of obstacles
- work for 2-dimensional configuration spaces
- do not work for higher dimensional spaces requirements:
- self localization (can use maps, GPS, etc.)
- coordinates of the start and destination points
- proximity sensing

Bugs algorithms

complete algorithms: a solution is found, if one exists

combination of 2 motion strategies:

- motion-to-goal: move towards the goal point
- boundary-following: run along the border of an obstacle

Bug 1

essentials:

- motion-to-goal until an obstacle is detected (hit point)
- complete circumnavigation of the obstacle to find the point p_{i}^{L} closest to the goal (leave point)
- return to p_{i}^{L} along the shortest path and back to motion-to-goal

Bug 1 pseudo-code

$\mathrm{i}=1$
$p_{i-1}^{L}=p_{\text {start }}$
while forever do
repeat
move from p_{i-1}^{L} to $p_{\text {goal }}$
until ($p_{\text {goal }}$ is reached \rightarrow path found) or $\left(\mathcal{W O} \mathcal{O}_{i}\right.$ encountered in $\left.p_{i}^{H}\right)$
select a direction (left or right)
repeat
follow the boundary of $\mathcal{W O}_{i}$
until ($p_{\text {goal }}$ is reached \rightarrow path found) or (p_{i}^{H} is encountered) determine the closest point $p_{i}^{L} \in \partial \mathcal{W} \mathcal{O}_{i}$ to $p_{\text {goal }}$ boundary following towards p_{i}^{L}, along the shortest path move towards the goal if $\mathcal{W \mathcal { O } _ { i }}$ is encountered then
$p_{\text {goal }}$ is not reachable stop
end if
$\mathrm{i}=\mathrm{i}+1$
end while

Bug 1: no path to goal

example where a path to goal can not be found

WO

Bug 1: proof of completeness

an algorithm is complete if, in finite time, it finds a path if such a path exists or terminates with failure if it does not

suppose Bug 1 were incomplete

this means that

- there is a path from start to goal
- by assumption, it has finite length, and intersects obstacles a finite number of times
- Bug 1 does not find it
- either it spends an infinite amount of time looking for the goal (it never terminates), or
- it terminates incorrectly (determines that there are not paths to goal)

Bug 1: proof of completeness

suppose it never terminates

- but each leave point is closer to $p_{\text {goal }}$ than corresponding hit point
- each hit point is closer than the previous leave point
- thus, there are a finite number of hit/leave pairs
- after exhausting them, the robot will proceed to the goal and terminate

Bug 1: proof of completeness

suppose it terminates with no path found (incorrectly)

- then, the closest point after a hit must be a leave point where the robot would have to move into the obstacle
- but, then line from robot to goal must intersect the object an even number of times (Jordan curve theorem)
- but then there is another intersection point on the boundary that is closer to the goal
- since we assumed there is a path, we must have crossed this point on the boundary, which contradicts the above assumption about the leave point

Bug 2

essentials:

- motion-to-goal until an obstacle is encountered
- obstacle circumnavigation until the r straight line is encountered in a point that is closer to the goal than the previous hit point
- the r straight line is the line passing through the starting point and the goal
- at that point, back to motion-to-goal along the r straight line

Bug 2: pseuso-code

$\mathrm{i}=1$
$p_{i-1}^{L}=p_{\text {start }}$
while forever do
repeat
move from p_{i-1}^{L} to $p_{\text {goal }}$
until ($p_{\text {goal }}$ is reached \rightarrow path found) or $\left(\mathcal{W O}_{i}\right.$ encountered in $\left.p_{i}^{H}\right)$
select a direction (left or right)
repeat
follow the boundary of $\mathcal{W O}_{i}$
until ($p_{\text {goal }}$ is reached \rightarrow path found) or
(p_{i}^{H} is encountered again \rightarrow no path exists) or r is crossed in point m such that $m \neq p_{i}^{H}$ (the robot did not get back to the hit point) $d\left(m, p_{\text {goal }}\right)<d\left(p_{i}^{H}, p_{\text {goal }}\right)$ (the robot got closer to the goal) if the robot moves towards $p_{\text {goal }}$ it does not encounter an obstacle set $p_{i}^{L}=m$
$\mathrm{i}=\mathrm{i}+1$
end while

Bug 2: no path to goal

example where no path exists connecting the starting point and the goal

Bug 2: odd condition

- may this situation happen?
- if not, which is the condition that prevents it?
- when r is intersected during the boundary following, the path goes down r only if the intersection point is closer to the goal than the hit point
- when in motion-to-goal (i.e., moving along r), the point never goes in a direction that takes it farther from the goal

Bug 1 and 2: performance comparison
performance indicator: path length

which is the method that achieves the shortest path in the worst-case?

(qualitative observations)

- Bug 1 always goes through the entire perimeter o_{i} of the i-th obstacle once
instead...
- Bug 2 may cross the straight line r several $\left(n_{i}\right)$ times for the i-th obstacle
- this fact may lead to cover the obstacle perimeter o_{i} several times

Bug 2: example of bad case

- the r straight line can intersect n_{i} times the boundary of the i-th obstacle
- therefore, there are $n_{i} / 2$ pairs of hit/leave points
- in the worst case, this leads to cover many times the same parts of the perimeter

Performance comparison

a more accurare comparison of the worst case can be done considering that n obstacles are encountered by both algorithms
path length generated by Bug 1:

$$
L_{\text {bug1 }} \leq d\left(p_{\text {start }}, p_{\text {goal }}\right)+1.5 \sum_{i=1}^{n} o_{i}
$$

path length generated by Bug 2:

$$
L_{\text {bug } 2} \leq d\left(p_{\text {start }}, p_{\text {goal }}\right)+\frac{1}{2} \sum_{i=1}^{n} n_{i} o_{i}
$$

Performance comparison

- in the worst case, the path generated by Bug 2 may quickly increase
- with Bug 2, the path length depends on how many times an obstacle is crossed by the r straight line
- an obstacle can be arbitrary complex, such that it is crossed by r an high number of times
- the performance of the algorithm strongly depends from the complexity of the environment

Two approaches, different features

Bug 1 and Bug 2 implement two common approaches available in operational research

- Bug 1 performs an exaustive research to (locally) find the optimal leave point
- Bug 2 uses heuristic research to limit the search time
- the heuristic adopted by Bug 2 is said greedy, i.e., the first option that promise good results is selected
as a consequence:
- Bug 2 provides good performance in case of simple obstacles
- generally, Bug 1 performs better in case of complex scenarios

A model for a range sensor

- the distance is given by the function $\rho: \mathbb{R}^{2} \times S^{1} \rightarrow \mathbb{R}$
- given a position $x \in \mathbb{R}^{2}$ and an orientation $\theta \in S^{1}$, the function is

$$
\begin{aligned}
\rho(x, \theta)= & \min _{\lambda \in[0, \infty]} d\left(x, x+\lambda[\cos \theta, \sin \theta]^{T}\right) \\
& \text { such that } x+\lambda[\cos \theta, \sin \theta]^{T} \in \bigcup_{i} \mathcal{W} \mathcal{O}_{i}
\end{aligned}
$$

Discontinuity of ρ

points of discontinuity of the ρ function are especially relevant: they indicate the presence of a passage between two obstacles

- a continuity interval is defined as a connected interval $x+\rho(x, \theta)[\cos \theta, \sin \theta]$ such that $\rho(x, \theta)$ is finite and continuous w.r.t. θ
- the limits of continuity intervals compose the set O_{i}

Example of sensor with infinite sensing range

connected interval $x+\rho(x, \theta)[\cos \theta, \sin \theta]$
such that $\rho(x, \theta)$ is finite and continuous w.r.t. θ

Model of a real range sensor

- a real range sensor has a finite sensing range
- being R the sensing range, the function $\rho_{R}: \mathbb{R}^{2} \times S^{1} \rightarrow \mathbb{R}$ is said saturated distance

$$
\rho_{R}(x, \theta)= \begin{cases}\rho(x, \theta), & \text { if } \rho(x, \theta)<R \\ \infty, & \text { otherwise }\end{cases}
$$

Example of sensor with finite sensing range

Tangent Bug

still uses the two motion modes, namely motion-to-goal and boundary-following

however, differently from Bug 1 and Bug 2:

- in motion-to-goal the robot can run along the obstacle border
- in boundary-following mode the robot may travel without considering the obstacle border
the names of the strategies may be misleading: they are only used to identify a motion state

Tangent Bug

- during the motion-to-goal the robot moves along the direction that minimized a cost function, such as $d\left(x, O_{i}\right)+d\left(O_{i}, p_{\text {goal }}\right)$
- when a local minimum of the cost function is found, it switches to the boundary-following mode
- in boundary-following mode 2 values are considered:
- $d_{\text {followed }}$, which is the minimum distance from the goal registered during the current boundary-following motion
- the value $d_{\text {reach }}$ calculated ad follows:

$$
\begin{gathered}
\Lambda=\left\{y \in \partial \mathcal{W} \mathcal{O}_{f}: \lambda x+(1-\lambda) y \in \mathcal{Q}_{\text {free }} \forall \lambda \in[0,1]\right\} \\
d_{\text {reach }}=\min _{c \in \Lambda} d\left(p_{\text {goal }}, c\right)
\end{gathered}
$$

- the robot switches back to motion-to-goal when
$d_{\text {reach }}<d_{\text {followed }}$

Tangent Bug

the Tangent Bug algorithm behavior depends on the sensing range of the range sensor
there are 3 cases:

- range $R=0$ (typical of a tactile sensor)
- range $R=\infty$ (the ideal situation)
- range $R>0$ but finite (real range sensor)

Tangent Bug with $R=0$

- the red line represents the motion-to-goal, while the blue line indicates the boundary-following
- points A and B indicate two local minima of the cost function

Tangent Bug with $R=\infty$

- the red line represents the motion-to-goal, while the blue line indicates the boundary-following

Tangent Bug: comparison between $R=0$ and $R=\infty$

the higher the sensing range, the better the performance of the algorithm in terms of length of the generated path

Potential fields method

pros

- does not require global information
- works in n-dimensional configuration spaces
- easy to implement and to visualize; this latter improves the predictability of the motion
- efficient implementation: fields are independent from each others, each field can be independently computed
- possibility to add custom parameters to tweak the desired behavior, both at design time and runtime
- the approach can be extended to non-Euclidean spaces

cons

- suffers of the local minima problem
- lack of completeness: may not find a path even if one exists

Potential fields and gradient
it is based on a potential field function such as

$$
U(p): \mathrm{R}^{n} \rightarrow \mathrm{R}
$$

$p \in \mathrm{R}^{n}$ is the point where the potential is calculated the gradient function can be obtained as

$$
\nabla U(p)=D U(p)^{T}=\left[\frac{\partial U}{\partial p_{1}} \ldots \frac{\partial U}{\partial p_{n}}\right]^{T}
$$

physical meaning:

- the potential can be considered as the energy level in the point p
- its gradient has the features of a force applied on the moving point when located in p

Comparison with a physical system
the point moving in the configuration space can be seen as a particle moving in a force field, which tends to a state of minimum energy

Comparison with a physical system
the point moving in the configuration space can be seen as a particle moving in a force field, which tends to a state of minimum energy

in presence of obstacles:

Attraction and repulsion
the overall potential is composed by the sum of 2 components:

$$
U(p)=U_{\text {att }}(p)+U_{\text {rep }}(p)
$$

- the attraction potential $U_{\text {att }}(p)$ attracts the particle; it is associated with the goal
- the repulsion potential $U_{\text {rep }}(p)$ repulses the particle; it is associated with obstacles

Attraction and repulsion
the force acting on the moving point is

$$
F(p)=F_{a t t}(p)+F_{r e p}(p)
$$

where

$$
\begin{aligned}
& F_{\text {att }}(p)=-\nabla U_{\text {att }}(p) \\
& F_{r e p}(p)=-\nabla U_{\text {rep }}(p)
\end{aligned}
$$

Example of motion in the potential field

Attraction potential

the attraction potential has the following features:

- it must be a monotone function that increases with the distance from the goal
- as a consequence, it is non-null everywhere but in the goal point
one of the most trivial function having such features increases quadratically with the distance from the goal:

$$
U_{a t t}(p)=\frac{1}{2} k_{a t t} d^{2}\left(p, p_{\text {goal }}\right)
$$

Attraction potential

the gradient of the attraction potential is

$$
\begin{aligned}
\nabla U_{\text {att }}(p) & =\nabla\left(\frac{1}{2} k_{\text {att }} d^{2}\left(p, p_{\text {goal }}\right)\right) \\
& =\frac{1}{2} k_{\text {att }} \nabla d^{2}\left(p, p_{\text {goal }}\right) \\
& =k_{\text {att }}\left(p-p_{\text {goal }}\right)
\end{aligned}
$$

- the gradient converges to 0
- can become arbitrary large if p is far from $p_{\text {goal }}$
- thresholds can be introduced on the distance to limit its value

Repulsion potential

the repulsion potential can be defined as follows:

$$
U_{\text {rep }}(p)= \begin{cases}\frac{1}{2} k_{r e p}\left(\frac{1}{D(p)}-\frac{1}{P^{*}}\right)^{2}, & \text { if } D(p) \leq P^{*} \\ 0, & \text { if } D(p)>P^{*}\end{cases}
$$

where:

- $D(p)$ is the distance of p from the closest point q of the closest obstacle
- P^{*} is the threshold value that allows to discard obstacles that are too far
its gradient is

$$
\nabla U_{\text {rep }}(p)= \begin{cases}k_{r e p}\left(\frac{1}{P^{*}}-\frac{1}{D(p)}\right) \frac{(p-q)}{D^{3}(p)}, & \text { if } D(p) \leq P^{*} \\ 0, & \text { if } D(p)>P^{*}\end{cases}
$$

The gradient descent

$$
\begin{aligned}
& p(0)=p_{\text {start }} \\
& \text { while }|\nabla U(p(i))|>\epsilon \text { do } \\
& \quad p(i+1)=p(i)+\alpha \nabla U(p(i)) \\
& \quad i=i+1
\end{aligned}
$$

end while
where

- $p(i)$ is the sequence of locations generated by the algorithm
- α is the motion step; while it should not be too large to avoid "jumping inside" an obstacle, it should not be too short to limit the execution time
- ϵ is the precision required to match the goal

The local minima problem

the sum of repulsion forces
balances the attraction

- The moving point gets stuck due to the balance of attraction and repulsion forces
- The point can get stuck even if there is a passage between the obstacles

