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Maps

a map is a data structure that represents the
environment where the robot (or a generic point)

can move

• it represents an important asset for path planning and
localization

• it is useful for planning more than one trajectory in the same
environment

• the mapping is the incremental process that builds a map
using the information gathered from sensors
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Different types of mapping

• topological mapping

• geometrical mapping

• occupancy grids
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Topological mapping

• the representation is based on graphs

• nodes represent relevant points in the environment (e.g.,
crossroads)

• edges determine the adjacency between nodes
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Topological mapping

• scale may be ignored

• paths are rectified
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Origin of topology

• The Seven Bridges of Königsberg in Prussia (now
Kaliningrad, Russia) is a historically notable problem in
mathematics

• The problem was to devise a walk through the city that would
cross each of those bridges once and only once

• Leonhard Euler proved it impossible in 1736
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Origin of topology

• Only the connection information is relevant; the shape of
pictorial representations of a graph may be distorted in any
way, without changing the graph itself

• The existence/absence of edges between each pair of nodes is
the only significant feature

• The research laid the foundations of graph theory and
prefigured the idea of topology
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Geometrical mapping

The representation of the obstacles uses geometrical primitives.

The environment is modeled as a set of lines.
In 3-dimensional spaces, triangles are usually used.
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Geometrical mapping

Which geometrical primitive should we use?

It is a trade-off between simplicity of description
and accuracy of the representation of the obstacles
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Geometrical mapping: examples

Use of the bounding sphere (bounding circle in 2D)

Obstacle

bounding circle

center

start

goal

ok

Obstacle

bounding circle

center

start

goal

ok
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Geometrical mapping: examples

Obstacle

bounding circle

center

start

goal

ok

Obstacle

bounding circle

center

start

goal

ok

Obstacle

bounding circles

center
center

start

goal

ok

• Good accuracy for obstacles with circle-like shape

• The quality of the generated path depends on the accuracy of
the representation

Trade-offs between accuracy and complexity (of the model):

• Which is the best approximation of the obstacles?

• How many parameters are required to model an obstacle?
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Geometrical mapping: examples

Obstacle

bounding box

start

goal

ok

Obstacle

piecewise linear approximation

start

goal

ok

ok

• Which model of the obstacle is more accurate?

• Which model allows more options for better (shorter) paths?

• How many parameters are required to model the obstacle?
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Occupancy grids

• grids are made by adjacent cells having adequate shapes

• for each cell, a flag (boolean value 0/1) indicates whether an
obstacle occupies the cell
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Occupancy grids

custom shapes of cells

• cells can have any shape to suitably map the shapes in the
environment

• the indication of the co-ordinates may require non-standard
representation and/or extra information
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Graphs
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Basics about graphs

C

A

D

B

F

E

• made by n nodes V1, . . . ,Vn ((V)ertex)

• the set of nodes is {A,B,C ,D,E ,F}
• nodes are connected by m edges E1, . . . ,Em

• the edge between B and E can also be indicated as ⟨B,E ⟩
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Basics about graphs: some terms

path: succession of nodes connected by edges

C

A

D

B

F

E

Example of path connecting C and F :
C → A → B → E → D → F
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Basics about graphs: some terms

(non)oriented graph: edges (do not) have an
orientation (arrows)

C

A

D

B

F

E

non-oriented graph

C

A

D

B

F

E

oriented graph
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Basics about graphs: some terms

(a)cyclic graph: there are (no) closed circuits in
the graph, i.e., there are (no) paths starting from
and getting back to the same node going through

distinct nodes

C

A

D

B

F

E

acyclic graph

C

A

D

B

F

E

cyclic graph
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Basics about graphs: some terms

(dis)connected graph: for each pair of nodes,
there is (not) a path connecting it

C

A

D

B

F

E

connected graph

C

A

D

B

F

E

disconnected graph
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The tree

a tree is a non-oriented connected acyclic graph

V2

V1

V3 V4 V5

V6 V7 V8 V9 V11

V12 V13V14 V15

V16V17 V18

V10

Some terms (by examples):

• node V 1 is said the root of
the tree

• node V 2 is said parent of
V 6 and V 7

• V 6 and V 7 are the children
of V 2

• a sub-tree starts in a node
and includes the set of
nodes below
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The visit of a tree

the visit consists in examining (visiting) the
nodes of a graph to search a node

associated with the desired information

• the application of graphs to the robot navigation, thus to the
motion from a starting point to the goal, uses a visit to
generate the path to follow

• the searched node is the goal
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Depth-first search (pre-order)

the parent node is visited first, then children are
visited in depth-first post-order order

V2

V1

V3 V4 V5

V6 V7 V8 V9 V11

V12 V13V14 V15

V16V17 V18

V10

1

2

3 4

5

6 7

8

9

10

11

12 13

14

15

16

17

18

V1 → V2 → V6 → V7 → V14 → V17 → V18 → V3 → V8 → V4 →
V9 → V12 → V13 → V16 → V5 → V10 → V11 → V15



Introduction Graphs Visibility maps Wave-front A∗

Depth-first search (post-order)

all children are visited with a depth-first pre-order
search, before visiting the parent node

V2

V1

V3 V4 V5

V6 V7 V8 V9 V11

V12 V13V14 V15

V16V17 V18

V10

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

V6 → V17 → V18 → V14 → V7 → V2 → V8 → V3 → V12 →
V16 → V13 → V9 → V4 → V10 → V15 → V11 → V5 → V1
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Breadth-first search

it visits all nodes at the present depth prior to
moving on to the nodes at the next depth level

V2

V1

V3 V4 V5

V6 V7 V8 V9 V11

V12 V13V14 V15

V16V17 V18

V10

1

2
3 4 5

6 7 8 9 10 11

12 13 14 15

16 17 18

V1 → V2 → V3 → V4 → V5 → V6 → V7 → V8 → V9 → V10 →
V11 → V14 → V12 → V13 → V15 → V17 → V18 → V16
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Visibility maps

the map is based on a visibility graph

nodes
• the start location and the goal

• all the vertices of obstacles

edges
• there is an edge from node v to node w i.i.f.

∀λ ∈ [0, 1] : λv + (1− λ)w ∈ Qfree
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Visibility graph: example
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Visibility graph: example
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Reduced visibility graph

a visibility graph may include many redundant,
non necessary edges

non necessary edges can be eliminated considering some peculiar
features:

1 segments of support

2 segments of separation
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Reduced visibility graph

NO

separation

support

all the edges that are not support
nor separation segments are
eliminated

actually, all segments that would intersect an
obstacle are eliminated
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Example of reduced visibility graph
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Representation of a visibility graph

V0

V2

V6

V3

V5

V7

V9

V10

V11

V8
V4

V1
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Representation of a visibility graph

V0

V2

V6

V3

V5

V7

V9

V10

V11

V8
V4

V1
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Visibility graph: construction

• V = {v1, . . . , vn} is the set of vertices

• for each vi ∈ V , the segment vivj must be checked for
intersections with obstacles ∀vj ̸= vi

• the number of segments vivj to check for intersections is
O(n2)

there are n vertices
each vertex can be connected to the remaining n − 1 vertices

• for each segment vivj the intersection must be checked
against the edges of all obstacles, that are O(n)

the overall complexity is O(n3)
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Grid-based maps

• the space is divided in adjacent cells

shape and size can change depending on the problem to solve

• the space is mapped such that a cell containing a piece of
obstacle is marked as occupied; it is free otherwise

• the resolution of the map is determined by the size of cells
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Effect of the resolution on path planning
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Effect of the resolution on path planning

Resolution: 3× 3 cells
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Effect of the resolution on path planning

Resolution: 4× 4 cells
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Effect of the resolution on path planning

Resolution: 6× 6 cells
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Effect of the resolution on path planning

Resolution: 9× 9 cells
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Effect of the resolution on path planning

Resolution: 12× 12 cells
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Effect of the resolution on path planning

Resolution: 18× 18 cells
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Resolution completeness

• the success of the trajectory planning depends on the
resolution

• an higher resolution increases the chance to find a path

• however, it requires more memory space to store the map:
each cell requires at least 1 bit to mark it as free or occupied

• moreover, it requires more computing time to process the
data, since there are more data

it is a trade-off between completeness and
time/space requirements
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The concept of “adjacent cell”

in case of square cells, the adjacency of two cells can be of two
types:

4 points connectivity

d = 1d = 2

d = 1 d = 1

d = 1d = 2 d = 2

d = 2

d = 0

8 points connectivity

d = 1

d = 1 d = 1

d = 1d = 1

d = 1

d = 1

d = 1

d = 0

d is the distance from the cell in the center,
measured in number of cells (hops)
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Wave-front algorithm

1 mark the cell containing the goal with i = 1

2 mark with i + 1 every adjacent cell to the one marked with i

3 repeat step 2 until the cell containing the starting point is
marked or all cells have been marked

4 use the gradient descent to go from the starting cell to the
goal cell
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Wave-front algorithm: example
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Wave-front algorithm and tree visit
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Wave-front algorithm and tree visit
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the assignment of labels to the cells can follow the
logic of the breadth-first visit of a tree
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Efficiency of the wave-front algorithm

12

2

2

23

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5 5

6

6

6

6

7

7

7

7

8

88

8

8

9

9

9

9

9

910

10

10

10

10

10

10

11

11

11

11

11

11

11

11

12

12

12

12

1212

12

12

13

13

13

13

13

14

14

14

14

14

15

15

15

15

15

16

16

16

16

16

16

17 17

17 17

17

17

17

2

2

1

1

3

3

4

4

5

5

6

6

7 8 9 10 11 12

7

8

9

10

11

12

(3,10)
1

(2,10)
2

(2,9)
3

(2,8)
4

(2,7)
5

(1,9)
4

(1,10)
3

(2,11)
3

(2,12)
4

(1,11)
4

(3,11)
2

(1,12)
5

(3,12)
3

(4,11)
3

(4,12)
4

(4,10)
2

(5,12)
5

(5,11)
4

(5,10)
3

(4,9)
3

(3,9)
4

(5,9)
4

(3,9)
2

(3,8)
3

(3,7)
4

(1,8)
5

(3,6)
5

the breadth-first search is inefficient: it may visit (i.e.,
assign labels) to a large, uninteresting part of the area
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Wave-front algorithm: characteristics

• complete: if a path exists (at a given resolution), it is found

• low efficiency: a large amount of “non necessary” cells can
be visited to assign the numbers to the cells

• optimal: it finds the shortest path (measured in number of
cells)

these features arise from the breadth-first search
performed on the grid
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The A∗ algorithm

• developed to find a path in a graph

• based on the knowledge of the goal location

• uses an heuristic search

• the heuristic is used to select the direction of movement

• it takes into account the distance between the current
location, the starting point and the goal
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The A∗ algorithm: some notation

h=2 Bh=3 Fh=1 E

h=3

A

h=3

D

h=3 J h=2 K

h=3

C

h=3

L

h=1 Hh=2 G h=2 I

start

goal

1

1

1
1

1 3

4 1 2

1 1

1

3 3

23

• c(V1,V2): cost (e.g., length) of
the edge connecting V1 to V2

• Neigh(V ): set of nodes adjacent to
V

• O: set of nodes “under
examination” (open set - priority
queue)

• C : set of visited nodes (closed set)

Examples
• c(A,D) = 1

• Neigh(C ) = {start, L, J,K}
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The A∗ algorithm: some notation

h=2 Bh=3 Fh=1 E

h=3

A

h=3

D

h=3 J h=2 K

h=3

C

h=3

L

h=1 Hh=2 G h=2 I

start

goal

1

1

1
1

1 3

4 1 2

1 1

1

3 3

23

• g(V ): cost of the backward path
from V to pstart

• h(V ): heuristic function; estimates
the cost from V to pgoal

• f (V ) = g(V ) + h(V ) : estimation
of the total cost of the path from
pstart to pgoal passing through V

Examples
• g(E ) = 2

• h(E ) = 1

• f (E ) = g(E ) + h(E ) = 2 + 1 = 3
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The A∗ algorithm: pseudo-code

input: the graph to analyze

output: the backward path from pgoal to pstart
Add Vstart to O
while O is not empty do

Select Vbest ∈ O : f (Vbest) ≤ f (V ) ∀V ∈ O
Move Vbest from O to C
if Vbest = pgoal then

Path found (cost is g(pgoal ))
Move from O to C all nodes with cost c ≥ g(pgoal )

end if
for all V ∈ Neigh(Vbest) : V /∈ C do

if V /∈ O then
add V to O

else
if g(Vbest) + c(Vbest ,V ) < g(V ) then

Connect V to Vbest

end if
end if

end for
end while
if No path found then

There are no existing paths
end if
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Example of application of A∗

h=2 Bh=3 Fh=1 E

h=3

A

h=3

D

h=3 J h=2 K

h=3

C

h=3

L

h=1 Hh=2 G h=2 I

start

goal

1

1

1
1

1 3

4 1 2

1 1

1

3 3

23

• nodes contain the
value of the heuristics

• edges are labelled
with edge’s costs
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Example of application of A∗

h=2 Bh=3 Fh=1 E

h=3

A

h=3

D

h=3 J h=2 K

h=3

C

h=3

L

h=1 Hh=2 G h=2 I

start

goal

1

1

1
1

1 3

4 1 2

1 1

1

3 3
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C(4)

B(3) H(3)

A(4)
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G(7)

H(3)

no further
expansion

E(3)

C(4)
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F(7)
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GOAL(5)

E(3)

D(5)
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F(7)
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L(5)

J(5)

L(5)

J(5)

C(4) L(5)

J(5)

K(4)

GOAL(4)

L(5)

J(5)
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Example of application of A∗

B(3)

A(4)

C(4)

B(3) H(3)

A(4)

C(4)

I(5)

G(7)

H(3)

no further
expansion

E(3)

C(4)

D(5)

I(5)

F(7)

G(7)

A(4)

GOAL(5)

E(3)

D(5)

I(5)

F(7)

G(7)

K(4)

L(5)

J(5)

L(5)

J(5)

C(4) L(5)

J(5)

K(4)

GOAL(4)

L(5)

J(5)

• at each step the node in the priority queue having the lower
cost is expanded

• once the goal is found, all the nodes in the priority queue
having cost higher than the cost of the path are removed

• all the remaining nodes may bring to a lower cost path, thus
they are examined
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Features of A∗

completeness
• A∗ generates a tree, which has no cycles by definition

• in a finite tree there is a finite number of distinct paths

• at most, every path is examined

• eventually, A∗ terminates by finding a path if it exists

however...
completeness does not necessarily mean

that A∗ is efficient
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Features of A∗

efficiency
• A∗ does not necessarily examine all the possible paths

• it explores in decreasing order all the paths that have the best
chances (heuristic function) to lead to the goal

• it terminates when no nodes provide better chances than the
current path

• this is the actual definition of “efficiency”

• if all paths are explored without finding a solution, then no
valid path exists (completeness!)

however...
efficiency does not necessarily mean that A∗ is optimal
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Features of A∗

optimality
• once a path to the goal is found (assuming it has cost c):

every node in the priority queue having cost less than c are
explored
such paths are explored until their cost remains less than c

• A∗ explores new paths until the priority queue becomes empty

• it concludes the search by finding the path having the lowest
cost path

a condition must hold to find an optimal path:

the heuristic function must be optimistic to guarantee
that the optimal path is found
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Optimistic heuristic function

an heuristic function is optimistic if it returns an estimate
of the distance from the goal that is less or equal to the

real distance

let’s consider:
• a grid of square cells

• 4 points connectivity

• the distance between two cells is computed using the
Manhattan distance
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Optimistic heuristic function

Manhattan distance:

dist(V , pgoal) = ∥V .x − pgoal .x∥+ ∥V .y − pgoal .y∥

Euclidean distance:

dist2(V , pgoal) =
√
(V .x − pgoal .x)2 + (V .y − pgoal .y)2

Eu
cl
id
ea
n 
di
st
an
ce

real distance

possible path pgoal

pstart

• the Euclidean distance (heuristic)
is always less or equal to the real
distance

• is optimistic
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Example of non optimistic heuristic

• the heuristic is not optimistic: node V 2 estimates its distance
from the goal equal to 11, while it is 2

• the resulting path passes through V 1 (cost 8) instead of
passing through V 2 (cost 4)
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Example of application of A∗

assumptions:
• grid composed by square cells

• 8 points connectivity

heuristic:
• horizontal and vertical distance between cells = 1

• diagonal distance = 1.4 (approximating
√
2)

ATTENTION: we are not using an approximated
Euclidean distance: the distance from a cell to the one
located 2 cells on the right and 1 above is 2.4, not

√
5
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Example of application of A∗

h=5.4 
g=0  
f=5.4 

h=4.4  
g=1  
f=5.4  

h=4  
g=1.4 
f=5.4  

h=5  
g=1  
f=6  

h=6  
g=1.4 
f=7.4 

h=6.4 
g=1  
f=7.4 

h=6.8  
g=1.4  
f=8.2  

h=5.8  
g=1  
f=6.8 

h=3.4  
g=2.8  
f=6.2

h=3.4  
g=2.8  
f=6.2

h=3  
g=2.4  
f=5.4

h=5.4  
g=2.8  
f=8.2

h=4.4  
g=2.4 
f=6.8

h=2.4  
g=3.8  
f=6.2

h=2  
g=3.4  
f=5.4

h=6.4  
g=2.4
f=8.8

h=7.6  
g=2  
f=9.6  

h=8.6  
g=2.4  
f=11 

h=8  
g=3.4  
f=11.4 

h=5.6  
g=3.4  
f=9 

h=4.2  
g=4.8 
f=9

h=5.2
g=4.4  
f=9.6 

h=6.2  
g=4.8  
f=11 

h=3.8  
g=5.8  
f=9.6 

h=4.8  
g=6.2 
f=11 

h=5.8
g=5.8 
f=11.6 

h=2.4
g=7.2
f=9.6 

h=4.4
g=7.2
f=11.6 

h=1
g=8.6
f=9.6 

h=2
g=8.2 
f=10.2 

h=0
g=9.6
f=9.6

h=1
g=10
f=11

h=1.4
g=9.6
f=11

h=2.4
g=10
f=12.4
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Simple variants of A∗

Greedy search
• assumes f (V ) = h(V ): only considers the estimated best path
from the current node

Dijkstra algorithm
• assumes f (V ) = g(V ): does not use any heuristic

• grows the current shortest path from the starting node
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