
Introduction Finite State Machines Extended FSM Composition Hybrid systems

Finite State Machines

Marco Della Vedova and Tullio Facchinetti
<tullio.facchinetti@unipv.it>

Friday 24th November, 2023

http://robot.unipv.it/toolleeo

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Models of computation and abstract machines

In computer science, automata theory studies mathematical
objects called abstract machines, or automata, and the
computational problems that they can solve.

Automata comes from the Greek word
αὺτόματα = “self-acting”

An abstract machine (a.k.a. abstract computer) is a theoretical
model of a computer hardware or software systems.

A model of computation is the definition of the set of allowable
operations used in computation and their respective costs. It is
used for:

• measuring the complexity of an algorithm in execution time
and/or memory space

• analyze the computational resources required

• software and hardware design

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Finite State Machines (FSMs)

A Finite State Machine (a.k.a. finite state automaton) is an
abstract device (simpler than a Turing machine).
It consists of:

• a set of states (including a start state)

• an alphabet of symbols that serves as a set of possible inputs
to the machine

• and a transition function that maps each state to another
state (or to itself) for any given input symbol

The machine operates by being fed a string of symbols, and moves
through a series of states according to the transition function.

Output? Different types of FSM are distinguished depending on
if the output is produced and how it is produced: before or after a
transition.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Example of FSM: an edge-detector

• The purpose of an edge detector is to detect transitions
between two symbols in the input sequence, say 0 and 1.

• It outputs 0 as long as the most recent input symbol is the
same as the previous one.

• However, when the most recent one differs from the previous
one, it outputs a 1.

• By convention, the edge detector always outputs 0 after
reading the very first symbol.

Examples of input/output sequence pairs for the edge-detector,
among an infinite number of possible pairs:

inputs −→ outputs

0 1 1 1 −→ 0 1 0 0

0 1 1 1 1 0 −→ 0 1 0 0 0 1

1 0 1 0 1 0 −→ 0 1 1 1 1 1

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Graphical representation of FSM using graphs

Edge-detector example

This graphical representation is known as state diagram.
A state diagram is a direct graph with a special node representing
the initial state.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Mathematical model of a FSM

A FSM is a five-tuple

(Σ, Γ, S, s0, δ)

where:

• Σ is the input alphabet (a finite, non-empty set of symbols).

• Γ is the output alphabet (a set of symbols).

• S is a finite, non-empty set of states.

• s0 is the initial state, an element of S.

• δ is the transition function: δ : S × Σ → S × Γ.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Exercise: math model of the edge detector

What (Σ, Γ, S, s0, δ) are for the edge-detector FSM?

• input alphabet Σ = ?{0, 1}
• output alphabet Γ = ?{0, 1}
• state space S = ?{A,B,C}
• initial state s0 = ?A

• transition function δ =?...

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Tabular representation of a FSMs’ transition function

The transition function δ : S ×Σ → S × Γ can be represented by a
tabular with states on the rows and inputs on the columns. In each
cell there is a tuple s, γ indicating the next state and the output.

For example, for the edge-detector FSM, the transition table is:

0 1

A B,0 C,0

B B,0 C,1

C B,1 C,0

Introduction Finite State Machines Extended FSM Composition Hybrid systems

The notion of state

• Intuitively, the state of a system is its condition at a particular
point in time

• In general, the state affects how the system reacts to inputs

• Formally, we define the state to be an encoding of everything
about the past that has an effect on the system’s reaction to
current or future inputs

The state is a summary of the past

Introduction Finite State Machines Extended FSM Composition Hybrid systems

When does a transition occur?

Nothing in the definition of a state machine constrains when it
reacts.
As a discrete system, we do not need to talk explicitly about the
amount of time that passes between transitions, since it is actually
irrelevant to the behavior of a FSM.

Still, a FSM could be:

• event triggered −→ it reacts whenever an input is provided

• time triggered −→ it reacts at regular time intervals

The definition of the FSM does not change in these two cases.
The environment where an FSM operates defines when it should
react.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Mealy FSM and Moore FSM

• So far we implicitly dealt with Mealy FSM, named after
George Mealy, a Bell Labs engineer who published a
description of these machines in 1955.

• Mealy FSM are characterized by producing outputs when a
transition is taken.

• An alternative, known as a Moore FSM, produces outputs
when the machine is in a state, rather than when transition is
taken.

• Moore machines are named after Edward Moore, another Bell
Labs engineer who described the model in a 1956 paper.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Moore FSM example

Request: Design a Moore FSM that takes characters A-Z as input
and returns 1 if in the input there is the string “CIAO”.
Note: since the output depends on the current state only, outputs are
shown in the state rather than on the transitions in the state diagram.

Notes (valid for Moore and Mealy FSM state diagrams):

• it is often convenient to use the label otherwise on transitions

• otherwise self-transition are called “default transitions” and can be
omitted

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Mealy FSM vs Moore FSM

• any Moore machine can be converted to an equivalent Mealy
machine

• a Mealy machine can be converted to an almost equivalent
Moore machine

• it differs only in that the output is produced on the next
reaction rather than on the current one

• Mealy machines tends to be more compact (requiring fewer
states to represent the same functionality), and are able to
produce an output that instantaneously responds to the input

• Moore machines are used when output is associated with a
state of the machine, hence the output is somehow persistent

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Exercises

• Convert the edge-detector Mealy FSM in an almost-equivalent
Moore FSM.

• Convert the CIAO-detector Moore FSM to an equivalent
Mealy FSM.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

FSM classification

• Transducers are machines that read strings (sequences of
symbols taken from an alphabet) and produce strings containing
symbols of another (or even the same) alphabet.

• Acceptors (aka recognizers and sequence detectors) produce a
binary output, saying either yes or no to answer whether the input
is accepted by the machine or not. All states of the FSM are said to
be either accepting or not accepting. At the time when all input is
processed, if the current state is an accepting state, the input is
accepted; otherwise it is rejected.

• Classifiers are a generalization that similarly to acceptors
produce a single output when terminates but has more than two
terminal states.

• Generators (aka sequencers) are a subclass of aforementioned
types that have a single-letter input alphabet. They produce only
one sequence, which can be interpreted as output sequence of
transducer or classifier outputs.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Extended state machines

The notation for FSMs becomes awkward when the number of
states gets large. Moreover, many applications require to read two
or more input sources.
Extended state machines address those issues by augmenting the
FSM model

• internal state variables that may be read and written as part
of taking a transition between states;

• input valuations: a valuation of a set of variables is an
assignment of value to each variable;

• transitions triggered by guards: a guard is a predicate (a
boolean-valued expression) that evaluates to true when the
transition should be taken;

• output actions that may be valuations of output variables or
function calls.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Extended state machines: graphical notation

The general notation for extended state machines is the following:

• set actions specify assignments to variables that are made
when the transition is taken

• these assignments are made after the guard has been
evaluated and the output actions have been fired

• if there are more than one output action or set action, they
are made in sequence

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Extended state machine example: traffic light

Problem: model a controller for a traffic light (for cars) at a pedestrian
crosswalk.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Extended state machine example: traffic light

Problem: model a controller for a traffic light (for cars) at a pedestrian
crosswalk.

1 Use a time triggered machine that reacts once per second.

2 It starts in the RED state and counts 60 seconds with the help of the
internal variable cnt.

3 It then transitions to GREEN, where it will remain until the input btn is
true. That input could be generated by a pedestrian pushing a button to
request a walk light.

4 When btn is true, the machine transitions to YELLOW if it has been in
state GREEN for at least 60 seconds.

5 Otherwise, it transitions to pending, where it stays for the remaining part
of the 60 second interval. This ensures that once the light goes green, it
stays green for at least 60 seconds.

6 At the end of 60 seconds, it will transition to YELLOW, where it will
remain for 5 seconds before transitioning back to RED.

7 The outputs produced by this machine is a function call to light(x),
where x ∈ {R,G, Y } represents the color light to be turned on.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Extended state machine example: traffic light

inputs: btn : {true, false}
outputs: light(x), x ∈ {R,G, Y }
variables: cnt : {0, . . . , 60}

RED

GREEN

YELLOW

cnt:=0

cnt:=cnt+1

cnt==60
/

light(G)
cnt:=0

cnt < 60
/

cnt:=cnt+1

btn && cnt==60
/

light(Y)
cnt:=0

cnt:=cnt+1

cnt>=5
/

light(R)
cnt:=0

PENDING

btn && cnt < 60
/

cnt:=cnt+1

cnt:=cnt+1

cnt==60
/

light(Y)
cnt:=0

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Extended state machines: state space

The state of an extended state machine includes not only the
information about which discrete state the machine is in (indicated
by a bubble), but also what values any variables have.
The number of possible states can therefore be quite large, or even
infinite.
If there are n discrete states (bubbles) and m variables each of
which can have one of p possible values, then the size of the state
space of the state machine is

|States| = npm

Extended state machines may or may not be FSMs. In particular,
it is not uncommon for p to be infinite. For example, a variable
may have values in N, the natural numbers, in which case, the
number of states is infinite.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Reachable states

Some state machines will have states that can never be reached, so
the set of reachable states – comprising all states that can be
reached from the initial state on some input sequence – may be
smaller than the set of states.

For example, in the traffic light FSM, the c variable has 61 possible
values and there are 4 bubbles, so the total number of
combinations is 61× 4 = 244. The size of the state space is
therefore 244.

However, not all of these states are reachable. In particular, while
in the YELLOW state, the count variable will have only one of 6
values in {0, . . . , 5}.

The number of reachable states, therefore, is 61× 3 + 6 = 189.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Determinacy

• A state machine is said to be deterministic (or determinate)
if, for each state, there is at most one transition enabled by
each input value.

• The given formal definition of an FSM ensures that it is
deterministic, since the transition function δ is a function, not
a one-to-many mapping.

• The graphical notation with guards on the transitions,
however, has no such constraint.

• Such a state machine will be deterministic only if the guards
leaving each state are non-overlapping.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Receptiveness

• A state machine is said to be receptive if, for each state,
there is at least one transition possible on each input symbol.

• In other words, receptiveness ensures that a state machine is
always ready to react to any input, and does not “get stuck”
in any state.

• The formal definition of an FSM given in the previous slides
ensures that it is receptive, since δ is a function, not a partial
function.

• It is defined for every possible state and input value.

• Moreover, in our graphical notation, since we have implicit
default transitions, we have ensured that all state machines
specified in our graphical notation are also receptive.

if a state machine is both deterministic and receptive, for every
state, there is exactly one transition possible on each input value

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Nondeterminism

If for any state of a state machine, there are two distinct transitions
with guards that can evaluate to true in the same reaction, then
the state machine is nondeterminate or nondeterministic.
It is also possible to define machines where there is more than one
initial state: such a state machine is also nondeterminate.

Applications
• modeling unknown aspects of the environment or system

• hiding detail in a specification of the system

• non-deterministic FSMs are more compact than deterministic
FSMs

a classic result in automata theory shows that a
nondeterministic FSM has a related deterministic FSM that is
language equivalent
but the deterministic machine has, in the worst case, many
more states (exponential)

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Deterministic vs non-deterministic: example

STATE

x < 0

x > 100

...

...

for any value of x, only one
guard evaluates to true

deterministic

STATE

x > 0

x < 100

...

...

for 0 < x < 100, both guards
evaluate to true

non-deterministic

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Behaviors, Traces and Computational Trees

• FSM behavior is a sequence of transitions.

• An execution trace is the record of inputs, states, and outputs
in a behavior. A trace looks like:

((u0, x0, y0), (u1, x1, y1), (u2, x2, y2), . . .)

or

x0
u0/y0−−−→ x1

u1/y1−−−→ x2
u2/y2−−−→ . . .

where ui, xi, yi represent valuation of the inputs, current
state, and outputs’ valuation at transition i, respectively.

• A computational tree is a graphical representation of all
possible traces

FSMs are suitable for formal analysis. For example, safety analysis
might show that some unsafe state is not reachable.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Computational tree example

Recall the edge-detector FSM: Computational tree:

Example of trace:

((1, A, 0), (1, C, 0), (0, C, 1), . . .) ≡ A
1/0−−→ C

1/0−−→ C
0/1−−→ . . .

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Implementation: imperative programming language

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Implementation: UML State Machine Diagram

Example: ATM

Reference: http://www.uml-diagrams.org/state-machine-diagrams.html

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Implementation: LabVIEW Statecharts

Example: Soda Vending Machine

Statechart Describing a Simple Soda Vending Machine. Source: LabVIEW
documentation.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Implementation: Simulink Stateflow

Example: Soda Vending Machine
15 cents required to get a can, nickel (coin 1) is 5 cents, dime (coin 2) is 10
cents

Source: Matlab-Simulink documentation.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Exercise: Bug 2 - algorithm overview

r

p
goal

p
start

p
i

H

p
i

L

WO i

essentials:
• motion-to-goal until an obstacle is encountered

• obstacle circumnavigation until the r straight line is
encountered, i.e., the line passing through the starting point
and the goal

• at that point, back to motion-to-goal along the r straight line

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Exercise: Bug 2 - hypoteses (1/2)

• Hypoteses:

discretized workspace - each point belongs to a finite set W
dist(P1,P2) - a function that computes the distance between
P1 and P2
isonR(P1) - a function that returns true if P1 is on the line r

• Input:

touch - binary variable set by a proximity sensor in front of the
robot
pos - variable in W , updated by a position sensor

• Output (actions):

go() - robot moves along the straight line in front of it
turn(...) - robot rotates; the action is instantaneous
(simplification)
coastObs() - robot proceeds coasting the obstacle
stop() - robot stops

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Exercise: Bug 2 - hypoteses (2/2)

• State variables:

hit - variable in W ∪ {NULL}, which stores the hit point
start - variable in W , which stores the starting point. It is
necessary for calculating the line start-goal

• Parameter:

goal - constant in W

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Exercise: Bug 2 - Mealy FSM

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Composition of State Machines

Introduction Finite State Machines Extended FSM Composition Hybrid systems

The problem of complex systems

• State machines provide a convenient way to model behaviors
of systems.

• One disadvantage that they have is that for most interesting
systems, the number of states is very large, often even infinite.

• Automated tools can handle large state spaces, but humans
have more difficulty with any direct representation of a large
state space.

A time-honored principle in engineering is that
complicated systems should be described as

compositions of simpler systems

Introduction Finite State Machines Extended FSM Composition Hybrid systems

The problem of complex systems

• there are many different ways to compose state machines

• compositions that look similar on the surface may mean
different things to different people

• the rules of notation of a model are called its syntax, and the
meaning of the notation is called its semantics

• the same syntax can have many different semantics, which
can cause no end of confusion

Beware that in the literature and in softwares there
exist many syntaxes, many semantics and even

many semantics for the same syntax!

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Different types of composition

We consider:

• concurrent composition

synchronous
asynchronous

• hierarchical composition

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Concurrent composition

Two or more machines react either simultaneously or
independently.

• Simultaneous reactions = synchronous model

• Independent reactions = asynchronous model

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Concurrent composition: side-by-side synchronous

• Input and output are disjoint.

• A reaction of C is a simultaneous reaction of A and B.

• Modular composition = the composition itself can become a
component of further compositions.

• C is itself a FSM.

• Determinacy (at most one edge for every input) is a
compositional property.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Concurrent composition: side-by-side asynchronous

In an asynchronous composition of FSM, the
component machines react independently.

Different semantics: a reaction of C is a reaction of
*, where the choice is **.

*A or B *A, B or both

**nondeterministic 1 2

**made by the environment 3 4

• 1, 3 are interleaving semantics (A and B never react at the
same time)

• In semantics 1, 2 determinacy is not a compositional property

• In semantics 3, 4 a composition has to provide a scheduling
policy

• Inputs may be completely missed

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Concurrent composition: cascade

• Type check: any output produced by A must be an
acceptable input to B.

• Asynchronous:

some machinery for data buffering from A to B

• Synchronous:

A reaction of C is a reaction of both A and B, which are
simultaneous, instantaneous and causally related (outputs
of A can affect behavior of B).

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Concurrent composition: feedback

Side-by-side (= parallel) and cascade (= series) composition
provide the basic blocks for building more complex composition of
machines.

How do we resolve
cycles?

Using the fixed point semantics.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Concurrent composition: feedback

Any network of actors can be reduced to a side-by-side
composition with feedback.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Concurrent composition: feedback

If the actors are determinate then each actor is a function that
maps input sequences to output sequences (not input symbols to
output symbols).
The semantics of such a feedback model is a system of
equations and the reduced form of Figure (d) becomes

s = F (s)

where s is the fixed point of the function F .

The semantics of a determinate actor network is a
fixed point.

The existence of a fixed point, its uniqueness and methods to find it are very

interesting topics, but they are out of the scope of this course. Check leeseshia.org

for more details.

leeseshia.org

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Hierarchical composition

The key idea in hierarchical state machines is state refinement.

What if the machine is in the state C, and g1 and g4 become true
at the same time?

Proliferation of different variants

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Hierarchical composition

Depth-first semantics: the deepest refinement of the current
state react first, then its container state machine, then its
container, etc.

Preemptive transitions: its
guard is evaluated before the
refinement.

Reset transitions vs. history
transitions: when a historian
transition is taken, the
destination refinement resumes in
whatever state it was last in.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Exercise: hierarchical FSM

Considering the following hierarchical state machine

Build an equivalent flat FSM with preemptive transitions
semantics.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Basic aspects of hybrid systems

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Hybrid systems

Hybrid systems combine both discrete and
continuous dynamics.

Hybrid system models are often much simpler and more
understandable than “brute-force“ models that constrain
themselves to only one of the two styles.

Hybrid systems are a powerful tool for understanding and modeling
real-world systems.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

FSM with continuous input

We have so far assumed that state machines operate in a sequence
of discrete reactions. The extended FSM model with guards on
transitions can coexist with time-based models. We need to
interpret state transitions to occur, instantly, on the same timeline
used for the time-based portion of the system.

Example Consider a thermostat modeled as a FSM with a
continuous time input τ : R → R where τ(t) represents the
temperature at time t.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

FSM with continuous output

In a hybrid system, the current state of the state machine has a
state refinement that gives the dynamic behavior of the output
as a function of the input.

Example Consider the thermostat and suppose to produce a
continuous control signal whose value is 1 when the heat is on and
0 when the heat is off.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Modes vs. states

A hybrid system is sometimes called modal model because it has
finite numbers of modes.

The states of the FSM may be referred to as modes rather than
states, which help prevent confusion with state variables of the
dynamic system.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Example: sticky masses - problem definition

Two stick masses are attached to springs. The masses oscillate on
a frictionless table. If they collide, they stick together and oscillate
together. After some time, the stickiness decays when the pulling
forces exceeds the stickiness force s, and masses pull apart again.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Example: sticky masses - system model

• p1 and p2 denote the neutral position of the two springs, i.e.
where the elastic force is zero.

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Example: sticky masses - behavior

• at start, the two springs are completely compressed

Introduction Finite State Machines Extended FSM Composition Hybrid systems

Example: sticky masses - behavior

release

together

• at start, the two springs are completely compressed

Introduction Finite State Machines Extended FSM Composition Hybrid systems

References:

• E.A. Lee and S.A. Seshia, Introduction to Embedded Systems
- A Cyber-Physical Systems Approach, LeeSeshia.org, 2011.
http://leeseshia.org

• J.E. Hopcroft, R. Motwani and J.D. Ullman, Introduction to
Automata Theory, Languages, and Computation, Addison
Wesley, 2003.
http://infolab.stanford.edu/~ullman/ialc.html

http://leeseshia.org
http://infolab.stanford.edu/~ullman/ialc.html

	Introduction
	Finite State Machines
	Extended FSM
	Composition
	Hybrid systems

