
Real-Time Scheduling
Shared resources

Tullio Facchinetti
<tullio.facchinetti@unipv.it>

Wednesday 22nd February, 2023

http://robot.unipv.it/toolleeo

What’s a shared resource?

tasks are not independent: they need to share
some resource (information)

shared resources:
• registers

• variables

• data structures

• files

• address spaces for peripheral I/O

in practice, they all are memory areas

Example

task 1 task 2variable v[4]
write readmemory area

initial condition: v [4] = [0, 0, 0, 0]

task 1: v [4]← [1, 2, 3, 4]

τ2

τ1

start write v[]

1 2

preemption

start read v[]

end read

1 2 0 0

end write

3 4

v[] = [0,0,0,0]

t1: write v[0]=1

t1: write v[1]=2

t2: read v[0]=1

t2: read v[1]=2

t2: read v[2]=0

t2: read v[3]=0

t1: write v[2]=3

t1: write v[3]=4

t1 writes
v[]=[1,2,3,4]

t2 reads

v[]=[1,2,0,0]

Concurrency management

when there is a protection of the concurrent access the resource
is said mutually exclusive

• protection is managed by semaphores

• not the only solution (e.g., non preemptive sections)

critical section

portion of code that accesses a mutually exclusive resource

Critical section

semaphores are used to reserve a resource

initial condition: v [4] = [0, 0, 0, 0]

task 1: v [4]← [1, 2, 3, 4]

τ2

τ1

wait(S)

1 2

preemption

wait(S)

signal(S)

43

signal(S)

1 2 3 4

t1: wait(S)

t1: write v[0]=1

t1: write v[1]=2

t2: wait(S)

t1: write v[2]=3

t1: write v[3]=4

t1: signal(S)

t2: read v[0]=1

t2: read v[1]=2

t2: read v[2]=3

t2: read v[3]=4

t2: signal(S)

t1 writes
v[]=[1,2,3,4]

t2 reads

v[]=[1,2,3,4]

Task blocking diagram

ready

dispatch

running

blocked

terminateactivate

signal wait

preemption

a task waiting for a resource is said blocked

Priority inversion

blocking

J

J

J

0 5 10 15 20 25

1

2

3

task J1 is blocked for the whole duration of a medium priority
task that does not even require the blocking resource

Non-preemptive critical sections

blocking

J

J

J

0 5 10 15 20 25

1

2

3

0 5 10 15 20 25

blocking

J

J

J

1

2

3

Priority Inheritance Protocol

IDEA

when a task Jlow is blocking a higher priority task Jhigh,
it inherites the priority of Jhigh

in this way

a medium priority task Jmed can not preempt Jlow ,
thus can not block Jhigh

therefore

the priority inversion is avoided

PIP: assumptions

• n periodic tasks τ1 . . . τn in decreasing priority order

• periods Ti , WCETs Ci , implicit deadlines

• m resources R1 . . .Rm associated to semaphores S1 . . . Sm

• Ji is a job of τi

• each job has a nominal priority Pi and an active priority pi

• pi ≥ Pi

• set pi = Pi at t = 0

PIP can be only used under a static priority assignment

PIP: assumptions

z i,j

z i,k

J

w(S) s(S)

s(S)

i

w(S)i,k

i,j i,j

i,k

• zi ,j is the j-th critical section of job Ji

• zi ,j is associated to the semaphore Si ,j of the resource Ri ,j

• zi ,j ∈ zi ,k means that zi ,j is completely containted into zi ,k

PIP: assumptions

z i,j

z i,k

J

w(S) s(S)

s(S)

i

w(S)i,k

i,j i,j

i,k

• tasks do not self-suspend

• critical sections are correctly nested

• critical sections are guarded by binary semaphores (only one
job can lock a given resource)

PIP: operating rules

• jobs scheduling is based on the active priority pi

• tasks having the same priority are scheduled using FIFO

• when Ji tries to enter the critical section zi ,j

if the resource Ri,j is locked by a task Jk , Ji is blocked
otherwise Ji enters the critical section

PIP: operating rules

• if Ji is blocked by a lower priority task Jk , Jk inherites the
priority of Ji , i.e., pk = pi

• Jk is resumed and scheduled at priority pi

• when Jk exits the critical section, the higher priority task
w.r.t. Jk is activated and...

• if Jk does not block any other task, its priority is set pk = Pk ;
otherwise Jk inherites the priority of the highest priority task
currently blocked

the inheritance is transitive: if J3 is blocking J2 and J2 is
blocking J1, then J3 inherites the priority of J1 through J2

PIP: example

direct blocking

push−through blocking

P

P

P

p

J

J

J1

2

3

3
3 2

1

• direct blocking: it happens when a higher priority task tries
to access the blocked resource; it guarantees the consistency
of the resource

• push-through blocking: a medium priority task is blocked by
a lower priority task; it avoids the priority inversion

PIP: example

nested critical sections

P

P

P

p

J

J

J1

2

3

3
3 2

1

PIP: example

transitive inheritance

P

P

P

p

J

J

J1

2

3

3
3 2

1

