Non-preemptive scheduling

Classical scheduling algorithms

Tullio Facchinetti <tullio.facchinetti@unipv.it>

24 novembre 2023

http://robot.unipv.it/toolleeo

the problem of resource allocation arose before the issues related with real-time scheduling

some common scheduling algorithms are:

- First Come First Served (FCFS)
- Shortest Job First (SJF)
- Round Robin (RR)

these algorithms do not work well under timing constraints

First Come First Served

features:

- non-preemptive
- dynamic (no assumptions regarding other parameters of tasks)
- online
- best effort

Non-preemptive scheduling 000

First Come First Served

- the scheduling pattern is determined by the task arrival time
- earlier tasks have higher priority
- tasks are inserted into the ready queue using a First In First Out policy (FIFO), without any further sorting

Response time

for non real-time algorithms, performance can be assessed by the response time

the response time R_i of the *i*-th task is

$$R_i = f_i - a_i$$

where

- f_i is the finishing time
- *a_i* is the arrival time

First Come First Served

the completion time of a task depends on:

- its arrival time
- the duration of all earlier tasks

no a-priori guarantees on the task completion time (response time)

Real-time algorithms

Non-preemptive scheduling

First Come First Served

the response time of a task depends on the order of arrival

Real-time algorithms

Non-preemptive scheduling

Shortest Job First (SJF)

higher priorities are assigned to tasks having shorter execution times (durations)

features:

- both preemptive and non-preemptive version
- static (the duration is constant)
- can be both online and offline
- minimizes the average response time

Real-time algorithms

Non-preemptive scheduling

Shortest Job First (SJF)

Shortest Job First with temporal constraints

example of task set that is schedulable with an algorithm different from $\ensuremath{\mathsf{SJF}}$

the same task set is not schedulable by SJF

SJF is not optimal (regarding the schedulability)

Non-preemptive scheduling

Round Robin (RR)

- the ready queue is managed with FIFO policy (First In First Out)
- if a task exhausts its time quantum, it is interrupted and re-inserted into the ready queue

Non-preemptive scheduling 000

Round Robin (RR)

the Round Robin algorithm is behind the so-called time-sharing systems

 $R_i \cong (nQ)\frac{C_i}{Q} = nC_i$

the response time of each task is equal to that of the same task executed on a processor n times slower

C	lassical	algorithms	
0	00000	000000	

Non-preemptive scheduling 000

Round Robin (RR)

- if $max(C_i) \leq Q$ then $RR \equiv FCFS$
- if the scheduling overhead *d* due to the context switch is taken into account:

$$R_i \cong n(Q+d)rac{C_i}{Q} = nC_irac{Q+d}{Q}$$

Earliest Due Date (EDD)

the task having the shortest relative deadline becomes the highest priority task

assumptions:

- simultaneous arrival of all tasks
- fixed priority (relative deadlines are known in advance)
- preemption is not an issue (simultaneous arrival)
- minimizes the maximum lateness *L_{max}*

 $\underset{OOO}{\text{Non-preemptive scheduling}}$

Lateness

How much the completion of a task is late w.r.t. its absolute deadline

EDD: schedulability test

given the definition of lateness:

$$L_i = f_i - d_i$$

to check the schedulability of the task set it suffices to check that every task τ_i has lateness $L_i \leq 0$ (or, similarly, max_i{ L_i } ≤ 0)

- the absolute deadline d_i is known for every task
- the finishing time f_i of τ_i can be computed by summing the duration of all tasks executed before τ_i plus C_i

Non-preemptive scheduling

EDD: example of schedulability test (1)

 $\underset{OOO}{\text{Non-preemptive scheduling}}$

EDD: example of schedulability test (2)

Tasks are sorted and scheduled in increasing deadline (decreasing priority) order.

 $\max_i \{L_i\} = 2$: the task set is not schedulable

Real-time algorithms

Non-preemptive scheduling

Earliest Deadline First (EDF)

the task having the closest absolute deadline becomes the highest priority task

assumptions:

- tasks can arrive at any moment
- dynamic priorities: d_i depends on the arrival time
- full-preemptive system
- minimizes the maximum lateness L_{max}

EDF: example of scheduling

• we consider a preemptive system

EDF: scheduling decisions and schedulability test

Two events trigger a scheduling decision:

- A new task is released (becomes ready for execution)
- The running task completes its execution

The schedulability test is applied everytime a new task is released

- Goal: verify if the set of tasks composed by already guaranteed tasks and the new task is schedulable
- If adding the new task makes the set of tasks not schedulable, then the new task is rejected (the simplest solution)

EDF: schedulability test

Basic idea: check if there is enough time to fit each task τ_i in the time interval between the current time t and the absolute deadline d_i , considering the "interference" of tasks with higher priority.

Tasks are sorted in decreasing priority order $(\tau_1 \text{ has the highest priority}, \tau_n \text{ has the lowest priority})$

$$orall au_i \quad \sum_{k=1}^i c_k(t) \leq d_i - t$$

where:

- *t* : current time (the arrival time of a new task)
- $c_k(t)$: remaining execution time of task au_k at time t

 $\underset{OOO}{\text{Non-preemptive scheduling}}$

EDF: schedulability test (example)

E.g. for task au_4 : $c_1(t) + c_2(t) + c_3(t) + c_4(t) \leq d_4 - t$

Comparing the complexity of EDD and EDF

EDD

- $O(n \log n)$ to sort the task set
- O(n) to check the schedulability

EDF

- O(n) to insert a new task into the ready queue
- O(n) to check the schedulability

Optimality of EDF

EDF is optimal in the sense of schedulability: it is guaranteed to find a schedule if one exists

in other words

- if an optimal algorithm (in the sense of schedulability) fails to generate a feasible schedule, then no other algorithm can find a feasible schedule
- if an algorithm minimizes the maximum lateness *L_{max}*, then it is optimal (in the sense of schedulability)
- the opposite does not hold

Real-time algorithms

Non-preemptive scheduling 000

Optimality of EDF: formal proof

the proof is due to Dertouzos (1974)

- the proof starts from a feasible schedule σ^A generated by an algorithm $A \neq EDF$
- **2** a procedure is applied to transform σ^A into σ^{EDF}
- it is shown that the procedure does not change the timing constraints of the schedule
- it is shown that σ^{EDF} is feasible

Optimality of EDF: formal proof

- the procedure holds for a generic schedule
- this proves that EDF is able to generate a feasible schedule if one exists

the above feature is plainly the definition of optimality

• therefore EDF is optimal

Non-preemptive scheduling

Dertouzos's algorithm

for all
$$t \in [0, D-1]$$
 do
if $\sigma(t) \neq E(t)$ then
 $\sigma(t_E) = \sigma(t)$
 $\sigma(t) = E(t)$
end if
end for

- the timeline is divided into time slices
- *t* is the time corresponding to a slice
- *D* is the largest deadline among all tasks
- $\sigma(t)$ is the running task at slice t
- *E*(*t*) is the active task having the closest deadline at slice *t*
- $t_E \ge t$ is the closest instant to t in which E(t) is executed
- If or each time slice, it is checked if it belongs to the task having the closest absolute deadline
- If so, the schedule is already the same as the one produced by EDF
- otherwise, the time slices are swapped

Non-preemptive scheduling

Dertouzos's algorithm

for all
$$t \in [0, D-1]$$
 do
if $\sigma(t) \neq E(t)$ then
 $\sigma(t_E) = \sigma(t)$
 $\sigma(t) = E(t)$
end if
end for

- the timeline is divided into time slices
- *t* is the time corresponding to a slice
- *D* is the largest deadline among all tasks
- σ(t) is the running task at slice t
- *E*(*t*) is the active task having the closest deadline at slice *t*
- $t_E \ge t$ is the closest instant to t in which E(t) is executed

important notes

- the computation time of tasks is not affected (in case, time slices are swapped)
- arrival times and deadlines are not affected
- each time slice is delayed to at most time t_E

Non-preemptive scheduling

Dertouzos's algorithm

for all
$$t \in [0, D-1]$$
 do
if $\sigma(t) \neq E(t)$ then
 $\sigma(t_E) = \sigma(t)$
 $\sigma(t) = E(t)$
end if

end for

- the timeline is divided into time slices
- *t* is the time corresponding to a slice
- *D* is the largest deadline among all tasks
- σ(t) is the running task at slice t
- *E*(*t*) is the active task having the closest deadline at slice *t*
- $t_E \ge t$ is the closest instant to t in which E(t) is executed

now, it holds

- $t_E + 1 \le d_E$ since σ^A is feasible
- 2 $d_E \leq d_i$ (d_E is the closest absolute deadline)
- therefore $t_E + 1 \leq d_E \leq d_i$ in σ^{EDF}
 - each task terminates before its deadline $\Rightarrow \sigma^{\textit{EDF}}$ is feasible
 - EDF is optimal

Non-preemptive scheduling $\bullet \circ \circ$

Non-preemptive scheduling

feasible schedule

EDF

Non-preemptive scheduling

- to ensure optimality in a non-preemptive system, the algorithm should be "clairvoyant"
- it should be able to decide to leave the CPU unused even in presence of ready tasks

although τ_2 becomes ready before τ_1 , it is not executed

if the possibility to leave the processor idle when there are ready task is forbidden, then EDF is optimal for this class of algorithms (work-conserving)

Non-preemptive scheduling: heuristics approach

the problem of finding a feasible schedule has NP-hard complexity

- heuristic techniques are adopted to obtain good results in reasonable time
- the computation is done offline
- typical methods are based on the exploration of graphs