
Classical algorithms Real-time algorithms Non-preemptive scheduling

Classical scheduling algorithms

Tullio Facchinetti
<tullio.facchinetti@unipv.it>

24 novembre 2023

http://robot.unipv.it/toolleeo

Classical algorithms Real-time algorithms Non-preemptive scheduling

The scheduling

the problem of resource allocation arose before the
issues related with real-time scheduling

some common scheduling algorithms are:

• First Come First Served (FCFS)

• Shortest Job First (SJF)

• Round Robin (RR)

these algorithms do not work well under timing
constraints

Classical algorithms Real-time algorithms Non-preemptive scheduling

First Come First Served

the processor is assigned on the basis of
the task arrival time

features:
• non-preemptive

• dynamic (no assumptions regarding other parameters of tasks)

• online

• best effort

Classical algorithms Real-time algorithms Non-preemptive scheduling

First Come First Served

CPU

t

ready queue

t

τ4 τ3 τ2 τ1

τ4τ3τ1 τ2

• the scheduling pattern is determined by the task arrival time

• earlier tasks have higher priority

• tasks are inserted into the ready queue using a First In First
Out policy (FIFO), without any further sorting

Classical algorithms Real-time algorithms Non-preemptive scheduling

Response time

for non real-time algorithms, performance can be assessed
by the response time

the response time Ri of the i-th task is

Ri = fi − ai

where

• fi is the finishing time

• ai is the arrival time

τi

finishing time

start time

arrival/release time

response time

Classical algorithms Real-time algorithms Non-preemptive scheduling

First Come First Served

the completion time of a task depends on:

• its arrival time

• the duration of all earlier tasks

no a-priori guarantees on the task completion time
(response time)

Classical algorithms Real-time algorithms Non-preemptive scheduling

First Come First Served

r r r

τ
2

τ
3

τ
1

10 15 2050

1 2 3 R1 = 10− 0 = 10
R2 = 19− 2 = 17
R3 = 21− 4 = 17

τ
3

τ
2

τ
1

2r3r 1r

50 10 15 20

R1 = 21− 4 = 17
R2 = 11− 2 = 9
R3 = 2− 0 = 2

the response time of a task depends on the order of arrival

Classical algorithms Real-time algorithms Non-preemptive scheduling

Shortest Job First (SJF)

higher priorities are assigned to tasks having
shorter execution times (durations)

features:
• both preemptive and non-preemptive version

• static (the duration is constant)

• can be both online and offline

• minimizes the average response time

Classical algorithms Real-time algorithms Non-preemptive scheduling

Shortest Job First (SJF)

r

τ
2

τ
3

τ
1

0 5 10 15 20

i R1 = 10− 0 = 10
R2 = 19− 0 = 19
R3 = 21− 0 = 21
R = 16.667

This schedule IS NOT the one produced by SJF

r

τ
2

τ
1

τ
3

0 5 10 15 20

i R1 = 21− 0 = 21
R2 = 11− 0 = 11
R3 = 2− 0 = 2
R = 11.333

This schedule IS the one produced by SJF

It can be formally proved that
the average response time is minimized.

Classical algorithms Real-time algorithms Non-preemptive scheduling

Shortest Job First with temporal constraints

example of task set that is schedulable with an algorithm different
from SJF

d d d

τ
2

τ
1

τ
3

1 2 3

the same task set is not schedulable by SJF

d d d

τ
1

τ
2

τ
3

1 2 3

SJF is not optimal (regarding the schedulability)

Classical algorithms Real-time algorithms Non-preemptive scheduling

Round Robin (RR)

each task can not run continuously for more than an
allotted time, called Q (time quantum)

ready queue

Q exhausted

CPUτ1τ2τ3τ4

insert
activ

ate

complete

dispatch

• the ready queue is managed with FIFO policy (First In First
Out)

• if a task exhausts its time quantum, it is interrupted and
re-inserted into the ready queue

Classical algorithms Real-time algorithms Non-preemptive scheduling

Round Robin (RR)

the Round Robin algorithm is behind the so-called
time-sharing systems

t

τ
1

τ
2

τ
3

τ
4

τ
1

τ
1

τ
1

τ
2

τ
2

τ
3

τ
3

τ
4

τ
4

nQ nQ nQ

Q

Ri
∼= (nQ)

Ci

Q
= nCi

the response time of each task is equal to
that of the same task executed on a

processor n times slower

Classical algorithms Real-time algorithms Non-preemptive scheduling

Round Robin (RR)

• if max(Ci) ≤ Q then RR ≡ FCFS

• if the scheduling overhead d due to the context switch is
taken into account:

t

n(Q+d) n(Q+d) n(Q+d)

Q+dQ d

τ τ τ τ τ τ τ τ τ τ τ τ τ1 2 3 4 1 2 3 4 1 2 3 4 1

Ri
∼= n(Q + d)

Ci

Q
= nCi

Q + d

Q

Classical algorithms Real-time algorithms Non-preemptive scheduling

Earliest Due Date (EDD)

the task having the shortest relative deadline
becomes the highest priority task

assumptions:
• simultaneous arrival of all tasks

• fixed priority (relative deadlines are known in advance)

• preemption is not an issue (simultaneous arrival)

• minimizes the maximum lateness Lmax

Classical algorithms Real-time algorithms Non-preemptive scheduling

Lateness

Li = fi − di

L > 0

L < 0

r

r f d

d fi

i i

ii

i

How much the completion of a task is late w.r.t.
its absolute deadline

Classical algorithms Real-time algorithms Non-preemptive scheduling

EDD: schedulability test

given the definition of lateness:

Li = fi − di

to check the schedulability of the task set it suffices
to check that every task τi has lateness Li ≤ 0

(or, similarly, maxi{Li} ≤ 0)

• the absolute deadline di is known for every task

• the finishing time fi of τi can be computed by summing the
duration of all tasks executed before τi plus Ci

Classical algorithms Real-time algorithms Non-preemptive scheduling

EDD: example of schedulability test (1)

τ1 τ2 τ3 τ4 τ5
Ci 1 2 1 3 2
di 4 10 7 9 5

0 1 2 3 4 5 6 7 8 9 10

Tasks are sorted and
scheduled in increasing
deadline (decreasing
priority) order.

task τ1 τ5 τ3 τ4 τ2
params (Ci , di) (1, 4) (2, 5) (1, 7) (3, 9) (2, 10)

fi 1 3 4 7 9
Li = fi − di -3 -2 -3 -2 -1

maxi{Li} = −1 : task set schedulable

Classical algorithms Real-time algorithms Non-preemptive scheduling

EDD: example of schedulability test (2)

τ1 τ2 τ3 τ4 τ5
Ci 1 2 3 3 2
di 4 5 6 9 7

0 1 2 3 4 5 6 7 8 9 10 11 12

Tasks are sorted and
scheduled in increasing
deadline (decreasing
priority) order.

task τ1 τ2 τ3 τ5 τ4
params (Ci , di) (1, 4) (2, 5) (3, 6) (2, 7) (3, 9)

fi 1 3 6 8 11
Li = fi − di -3 -2 0 1 2

maxi{Li} = 2 : the task set is not schedulable

Classical algorithms Real-time algorithms Non-preemptive scheduling

Earliest Deadline First (EDF)

the task having the closest absolute deadline
becomes the highest priority task

assumptions:
• tasks can arrive at any moment

• dynamic priorities: di depends on the arrival time

• full-preemptive system

• minimizes the maximum lateness Lmax

Classical algorithms Real-time algorithms Non-preemptive scheduling

EDF: example of scheduling

τ
4

τ
3

τ
2

τ
1

• we consider a preemptive system

Classical algorithms Real-time algorithms Non-preemptive scheduling

EDF: scheduling decisions and schedulability test

Two events trigger a scheduling decision:

• A new task is released (becomes ready for execution)

• The running task completes its execution

τ
4

τ
3

τ
2

τ
1

The schedulability test is applied
everytime a new task is released

• Goal: verify if the set of tasks composed by already
guaranteed tasks and the new task is schedulable

• If adding the new task makes the set of tasks not schedulable,
then the new task is rejected (the simplest solution)

Classical algorithms Real-time algorithms Non-preemptive scheduling

EDF: schedulability test

Basic idea: check if there is enough time to fit each task τi in the
time interval between the current time t and the absolute deadline
di , considering the “interference” of tasks with higher priority.

Tasks are sorted in decreasing priority order
(τ1 has the highest priority, τn has the lowest priority)

∀τi
i∑

k=1

ck(t) ≤ di − t

where:

• t : current time (the arrival time of a new task)

• ck(t) : remaining execution time of task τk at time t

Classical algorithms Real-time algorithms Non-preemptive scheduling

EDF: schedulability test (example)

∀τi
i∑

k=1

ck(t) ≤ di − t

τ2

τ3

τ4

τ1

c (t)1

c (t)3

c (t)4

c (t)2

d4t

E.g. for task τ4 : c1(t) + c2(t) + c3(t) + c4(t) ≤ d4 − t

Classical algorithms Real-time algorithms Non-preemptive scheduling

Comparing the complexity of EDD and EDF

EDD
• O(n log n) to sort the task set

• O(n) to check the schedulability

EDF
• O(n) to insert a new task into the ready queue

• O(n) to check the schedulability

Classical algorithms Real-time algorithms Non-preemptive scheduling

Optimality of EDF

EDF is optimal in the sense of schedulability: it is
guaranteed to find a schedule if one exists

in other words
• if an optimal algorithm (in the sense of schedulability) fails to
generate a feasible schedule, then no other algorithm can find
a feasible schedule

• if an algorithm minimizes the maximum lateness Lmax , then it
is optimal (in the sense of schedulability)

• the opposite does not hold

Classical algorithms Real-time algorithms Non-preemptive scheduling

Optimality of EDF: formal proof

the proof is due to Dertouzos (1974)

1 the proof starts from a feasible schedule σA generated by an
algorithm A ̸= EDF

2 a procedure is applied to transform σA into σEDF

3 it is shown that the procedure does not change the timing
constraints of the schedule

4 it is shown that σEDF is feasible

Classical algorithms Real-time algorithms Non-preemptive scheduling

Optimality of EDF: formal proof

• the procedure holds for a generic schedule

• this proves that EDF is able to generate a feasible schedule if
one exists

the above feature is plainly
the definition of optimality

• therefore EDF is optimal

Classical algorithms Real-time algorithms Non-preemptive scheduling

Dertouzos’s algorithm

for all t ∈ [0,D − 1] do
if σ(t) ̸= E (t) then

σ(tE) = σ(t)
σ(t) = E (t)

end if
end for

• the timeline is divided into time slices

• t is the time corresponding to a slice

• D is the largest deadline among all tasks

• σ(t) is the running task at slice t

• E(t) is the active task having the closest
deadline at slice t

• tE ≥ t is the closest instant to t in which
E(t) is executed

1 for each time slice, it is checked if it belongs to the task
having the closest absolute deadline

2 if so, the schedule is already the same as the one produced by
EDF

3 otherwise, the time slices are swapped

Classical algorithms Real-time algorithms Non-preemptive scheduling

Dertouzos’s algorithm

for all t ∈ [0,D − 1] do
if σ(t) ̸= E (t) then

σ(tE) = σ(t)
σ(t) = E (t)

end if
end for

• the timeline is divided into time slices

• t is the time corresponding to a slice

• D is the largest deadline among all tasks

• σ(t) is the running task at slice t

• E(t) is the active task having the closest
deadline at slice t

• tE ≥ t is the closest instant to t in which
E(t) is executed

important notes
• the computation time of tasks is not affected (in case, time
slices are swapped)

• arrival times and deadlines are not affected

• each time slice is delayed to – at most – time tE

Classical algorithms Real-time algorithms Non-preemptive scheduling

Dertouzos’s algorithm

for all t ∈ [0,D − 1] do
if σ(t) ̸= E (t) then

σ(tE) = σ(t)
σ(t) = E (t)

end if
end for

• the timeline is divided into time slices

• t is the time corresponding to a slice

• D is the largest deadline among all tasks

• σ(t) is the running task at slice t

• E(t) is the active task having the closest
deadline at slice t

• tE ≥ t is the closest instant to t in which
E(t) is executed

now, it holds
1 tE + 1 ≤ dE since σA is feasible

2 dE ≤ di (dE is the closest absolute deadline)

3 therefore tE + 1 ≤ dE ≤ di in σEDF

• each task terminates before its deadline ⇒ σEDF is feasible

• EDF is optimal

Classical algorithms Real-time algorithms Non-preemptive scheduling

Non-preemptive scheduling

in case of non-preemptive systems
EDF is not optimal

feasible schedule
τ

1

τ
2

EDF
τ

1

τ
2

Classical algorithms Real-time algorithms Non-preemptive scheduling

Non-preemptive scheduling

• to ensure optimality in a non-preemptive system, the
algorithm should be “clairvoyant”

• it should be able to decide to leave the CPU unused even in
presence of ready tasks

τ
1

τ
2

although τ2 becomes ready
before τ1, it is not executed

if the possibility to leave the processor idle when there are
ready task is forbidden, then EDF is optimal for this class

of algorithms (work-conserving)

Classical algorithms Real-time algorithms Non-preemptive scheduling

Non-preemptive scheduling: heuristics approach

the problem of finding a feasible schedule has
NP-hard complexity

• heuristic techniques are adopted to obtain good results in
reasonable time

• the computation is done offline

• typical methods are based on the exploration of graphs

	Classical algorithms
	Real-time algorithms
	Non-preemptive scheduling

