
Aperiodic tasks Static priorities Dynamic priorities

Real-Time Scheduling
Aperiodic tasks

Tullio Facchinetti
<tullio.facchinetti@unipv.it>

6 dicembre 2023

http://robot.unipv.it/toolleeo



Aperiodic tasks Static priorities Dynamic priorities

Aperiodic tasks: task model

2 3

0 5 10 15

1

20 25

RM

τ
3

τ
2

τ
1

• when aperiodic requests need to be scheduled

• guarantees on periodic tasks



Aperiodic tasks Static priorities Dynamic priorities

Aperiodic tasks

r i,1 r i,2 r i,3

C

0 5 10 15 20 25 30 t

J i

i

aperiodic tasks
ri ,k+1 > ri ,k

sporadic tasks

ri ,k+1 ≥ ri ,k + Ti



Aperiodic tasks Static priorities Dynamic priorities

Background scheduling

τ
1

τ
2

τ
3

J i

0 5 10 15 20 25

• aperiodic tasks are scheduled when the processor is idle

• simple and easy-to-implement technique



Aperiodic tasks Static priorities Dynamic priorities

Dedicated methods

different methods have been proposed, distinguishing
between static and dynamic priority assignment

considered algorithms:

Static priorities
• Polling Server

• Sporadic Server

Dynamic priorities
• Total Bandwidth Server

• Constant Bandwidth Server



Aperiodic tasks Static priorities Dynamic priorities

Polling Server

scheduling of soft aperiodic tasks concurrently with
hard periodic tasks

assumptions:
• full-preemption

• periodic tasks are scheduled by RM

• implicit deadlines

• aperiodic tasks have

unknown arrival time
known worst-case computation time



Aperiodic tasks Static priorities Dynamic priorities

Polling Server

1 period Ts , nominal capacity Cs and current capacity cs
2 every Ts time units the current capacity is recharged up to

the nominal value Cs (i.e., cs = Cs)

3 one unit of cs is consumed for each slot served to an aperiodic
task

4 if there are no aperiodic tasks ready for execution, the server
self-suspends and flushes its current capacity (i.e., cs = 0)

the flushing of the capacity may cause the presence
of idle times that is not exploitable by aperiodic

tasks ready for execution



Aperiodic tasks Static priorities Dynamic priorities

Polling Server

0 10 202 6 8 12 14 18 22 244 16

τ
1

τ
2

c s

J

2 1 2 1

i

2

1

0

τ1 = (1, 4) τ2 = (2, 6) Cs = 2 e Ts = 5



Aperiodic tasks Static priorities Dynamic priorities

Schedulability analysis

from the schedulability viewpoint, a Pollig Server behaves like a
periodic task having period Ts and WCET Cs

Up + Us ≤ Ulub(n + 1)

n∑
i=1

Ci

Ti
+

Cs

Ts
≤ (n + 1)

[
21/(n+1) − 1

]
in case there are m Polling Servers:

Up +
m∑
j=1

Usj ≤ Ulub(n +m)



Aperiodic tasks Static priorities Dynamic priorities

Sporadic Server

parameters for its definition:

• period Ts

• maximum budget Cs

• static priority Ps (e.g., set according to RM)

parameters used for its functioning:

• C (t) : current server capacity

• Pexe : priority of the running task



Aperiodic tasks Static priorities Dynamic priorities

Sporadic Server: operating rules

the Sporadic Server works according to the following rules:

1 the server is said active at time t if Pexe ≥ Ps and C (t) > 0

2 the server is said idle at time t if Pexe < Ps or C (t) = 0

3 at time t = 0 the server is idle and C (0) = Cs

4 when the server becomes active at time t1 a corresponding
recharging time is set at time tr = (t1 + Ts)

5 when the server becomes idle at time t2 > t1 a recharge
budget is set equal to the budget Cr consumed during the
interval [t1, t2)

6 at time tr the capacity Cr is added to the current budget



Aperiodic tasks Static priorities Dynamic priorities

Sporadic Server: example

0 10 202 6 8 12 14 18 22 244 16

τ2

τ1

sC

SS

J

+2

+2

2 2

0

1

2

3

4

5

i

C(t)

τ1 = (1, 5) τ2 = (4, 15) Cs = 5 e Ts = 10



Aperiodic tasks Static priorities Dynamic priorities

SS: schedulability analysis

a Sporadic Server does not behave like a periodic task

n∑
i=1

Ci

Ti
≤ n

[(
2

Us + 1

)1/n

− 1

]

• let Up be the utilization of all periodic tasks

• the highest utilization of the sporadic server that guarantees
the schedulability of periodic tasks is U∗

SS

U∗
SS = 2

(
Up

n
+ 1

)−n

− 1



Aperiodic tasks Static priorities Dynamic priorities

Scheduling algorithms for dynamic priorities

many algorithms are adaptations of static priority
scheduling algorithms

example:
• Dynamic Sporadic Server

some algorithms were born for dynamic priorities:
• Total Bandwidth Server

• Total Bandwidth Server*

• Constant Bandwidth Server



Aperiodic tasks Static priorities Dynamic priorities

Assumptions

concurrent scheduling of soft aperiodic tasks and
hard periodic tasks

assuming that
• periodic tasks are scheduled by EDF

• implicit deadlines (deadlines are equal to periods)

• full preemption

• for aperiodic tasks:

unknown arrival times
known computation times



Aperiodic tasks Static priorities Dynamic priorities

Total Bandwidth Server

server design parameter:
• bandwidth (utilization) Us

operating rules:
• an aperiodic task J arrives at time rk

• the J task requires Ck time units to execute

• an absolute deadline dk is calculated for J

dk = max(rk , dk−1) +
Ck

Us

• being d0 = 0 by definition

• J is scheduled by EDF considering the computed deadline dk



Aperiodic tasks Static priorities Dynamic priorities

TBS: example

τ1 = (3, 6) τ2 = (2, 8) Us = 1− Up = 0.25

τ
2

τ
1

0 10 15 20 255

iJ

1 2 1

dk = max(rk , dk−1) +
Ck

Us

max(3, 0) + 1
0.25 = 3 + 4 = 7

max(9, 7) + 2
0.25 = 9 + 8 = 17

max(14, 17) + 1
0.25 = 17+ 4 = 21



Aperiodic tasks Static priorities Dynamic priorities

Total Bandwidth Server*

TBS* shortens the deadline of the aperiodic task J
as much as possible

• the first assignment is done as in TBS

• the deadline can be shortened to the actual finishing time

τ1

τ2

J i

3

0 5 10 15 20 25

anticipate
deadline

τ1 = (1, 3) τ2 = (2, 4) Us = 1− Up = 0.1667



Aperiodic tasks Static priorities Dynamic priorities

Total Bandwidth Server*

TBS* shortens the deadline of the aperiodic task J
as much as possible

• the first assignment is done as in TBS

• the deadline can be shortened to the actual finishing time

τ1

τ2

J i

0 5 10 15 20

3

25

anticipate deadline

τ1 = (1, 3) τ2 = (2, 4) Us = 1− Up = 0.1667



Aperiodic tasks Static priorities Dynamic priorities

Total Bandwidth Server*

TBS* shortens the deadline of the aperiodic task J
as much as possible

• the first assignment is done as in TBS

• the deadline can be shortened to the actual finishing time

τ1

τ2

J i

0 5 10 15 20 25

3 anticipate deadline

τ1 = (1, 3) τ2 = (2, 4) Us = 1− Up = 0.1667



Aperiodic tasks Static priorities Dynamic priorities

Total Bandwidth Server*

TBS* shortens the deadline of the aperiodic task J
as much as possible

• the first assignment is done as in TBS

• the deadline can be shortened to the actual finishing time

τ1

τ2

J i

0 5 10 15 20 25

33 anticipate deadline

τ1 = (1, 3) τ2 = (2, 4) Us = 1− Up = 0.1667



Aperiodic tasks Static priorities Dynamic priorities

Total Bandwidth Server*

TBS* shortens the deadline of the aperiodic task J
as much as possible

• the first assignment is done as in TBS

• the deadline can be shortened to the actual finishing time

τ1

τ2

J i

0 5 10 15 20 25

3 anticipate deadline

τ1 = (1, 3) τ2 = (2, 4) Us = 1− Up = 0.1667



Aperiodic tasks Static priorities Dynamic priorities

Total Bandwidth Server*

TBS* shortens the deadline of the aperiodic task J
as much as possible

• the first assignment is done as in TBS

• the deadline can be shortened to the actual finishing time

τ1

τ2

J i

0 5 10 15 20 25

3

shifted anymore

deadline can not be

τ1 = (1, 3) τ2 = (2, 4) Us = 1− Up = 0.1667



Aperiodic tasks Static priorities Dynamic priorities

Total Bandwidth Server*

the deadline is shortened
using an iterative process

being at iteration s:

• d s
k is the deadline assigned to Jk

• f sk is the finishing time of Jk

the iterative shortening process is:

• at step s + 1 it is set d s+1
k = f sk

• the process stops when d s+1
k = d s

k



Aperiodic tasks Static priorities Dynamic priorities

Total Bandwidth Server*

computational issue

• the calculation of the worst-case finishing time may require to
perform the schedule until the desired time

• in many cases (e.g., high utilization of periodic tasks), this
may lead to impractical computation times

• the finishing time f sk can be approximated

• an upper bound is proved to exist

• its calculation is fast enough to be used online



Aperiodic tasks Static priorities Dynamic priorities

TBS*: optimality

Theorem

TBS* generates the absolute deadline of an aperiodic task such as
its response time is minimized

therefore, TBS* is optimal
(in the sense of response time minimization)



Aperiodic tasks Static priorities Dynamic priorities

Constant Bandwidth Server

• the CBS implements a bandwidth reservation scheme

• let Us be the bandwidth assigned to the CBS

• the CBS never requires more that Us to work

the server absolute deadline is based on the server bandwidth

• ... even in case of overload (overrun of aperiodic tasks)

the absolute deadline is postponed to achieve the constraint on the
bandwidth assigned to the server

• performance in terms of response time for aperiodic tasks is
similar to those of TBS



Aperiodic tasks Static priorities Dynamic priorities

CBS: operating rules

1 maximum budget Qs , period Ts and current budget cs

2 server bandwidth: Us = Qs/Ts

3 at every time, the k-th calculated absolute deadline ds,k is the
current deadline of the CBS

4 by definition ds,0 = 0

5 at each job Ji ,j it is assigned the absolute deadline di ,j = ds,k

6 the current budget cs decreases of one unit for each time unit
of execution

7 when cs = 0 the budget is refilled (i.e., it is set cs = Qs), and
a new absolute deadline is computed as ds,k+1 = ds,k + Ts



Aperiodic tasks Static priorities Dynamic priorities

CBS: operating rules

1 the server is active when there are pending aperiodic jobs, idle
otherwise

2 when the server is active, a new aperiodic job Ji ,j is queued
with arbitrary policy to the queue of pending requests

3 when the server is idle and a new aperiodic job Ji ,j is released:

if cs ≥ (ds,k − ri,j)Us ⇒ compute a new absolute deadline
ds,k+1 = ri,j + Ts and set cs = Qs

otherwise ⇒ schedule Ji,j with the current absolute deadline
ds,k and budget cs

4 when a job finishes, the next one is served with absolute
deadline ds,k and budget cs

5 if no more tasks are present in the queue, the server becomes
idle



Aperiodic tasks Static priorities Dynamic priorities

CBS: example

0 5 10 15 20
0

1

2

3

4 3

τ1 = (7, 4) Qs = 3 Ts = 8 Us = 0.375



Aperiodic tasks Static priorities Dynamic priorities

CBS: schedulability analysis

• let Up be the utilization of periodic tasks

• the utilization of a CBS is always Us = Qs/Ts independently
from the timing parameters of aperiodic jobs

• the system is schedulable iif Up + Us ≤ 1

• since the budget cs is never null, the CBS performs an
automatic reclaiming of unused computing time in case of
earlier termination of an aperiodic job

in case of m CBSs where the i-th server has utilization Usi , the
system is schedulable iif

Up + Us ≤ 1 Us =
m∑
i=1

Usi



Aperiodic tasks Static priorities Dynamic priorities

Summary

TBS
• trivial operating rules

• good performance

• does not tolerate overloads

TBS*
• optimal response time

• higher complexity w.r.t. TBS

• trade-off can be established between response time and
computational overhead

CBS
• bandwidth reservation in case of overload

• good performance (comparable with TBS)

• simple implementation


	Aperiodic tasks
	Static priorities
	Dynamic priorities

