
Data formats RESTful services

REST API and Data Formats

Tullio Facchinetti
<tullio.facchinetti@unipv.it>

24 maggio 2023

http://robot.unipv.it/toolleeo



Data formats RESTful services

XML and JSON

The two currently most widely adopted data formats:

1 XML - Extensible Markup Language

2 JSON - JavaScript Object Notation

Origin:

• XML - Markup language proposed by the World Wide Web
Consortium in 1998.

• JSON - Data interchange originally specified by Douglas
Crockford originally in the early 2000s to be used with
Javascript.



Data formats RESTful services

Examples

XML

<update>2023-03-03</update>

<students>

<student>

<lastName>Doe</lastName>

<age>18</age>

</student>

<student>

<lastName>Smith</lastName>

<age>22</age>

</student>

<student>

<lastName>Jones</lastName>

<age>20</age>

</student>

</students>

JSON

{

"update": "2023-03-03",

"students":

[

{

"lastName": "Doe",

"age": 18

},

{

"lastName": "Smith",

"age": 22

},

{

"lastName": "Jones",

"age": 20

}

]

}

Line breaks, indentation and spacing are for human readability.



Data formats RESTful services

Characteristics of XML

• Tree data structure.

• Supports attributes to elements.

• Validation through an additional XML schema (XSD) that
defines the necessary metadata for interpreting.

• Supports comments.

• Supports namespaces.

• Supports complex data types (images, audio, etc.).

• Several file formats are based on XML (e.g., SVG, Open XML
- docx, xlsx, pptx, OpenDocument - ods, odt, odp).

• Verbose.



Data formats RESTful services

Characteristics of JSON

• File format based on array and maps.

• Data structures directly mapped on programming language
types (e.g., Javascript, Python).

• Support for primitive types such as strings, numbers, arrays,
boolean and null.

• Fast and easy to parse.

• (Relatively) Compact.



Data formats RESTful services

Comparison

XML JSON

Human readable

Speed

Size

Comments

UTF support

Array support

Data types

Namespace support

In general, XML is adequate to more articulated and complex data
structures, while JSON works better for simpler and faster data
exchange (e.g., through API).



Data formats RESTful services

Data structure in JSON

JSON is based on two fundamental data structure:

• List: like arrays but with variable size and heterogeneous types

• Map (or hash map, or dictionary): key-value association

Nesting
• Lists can contain maps as elements

• The value of a map can be a list

Sorting of elements
• List: based on the position of appearance in the list

• Map: not sorted

Access to elements
• List: by index (e.g. mylist[0])

• Map: by key (e.g. mymapp["Facchinetti"])



Data formats RESTful services

Example

{

"update": "2023-03-03",

"students":

[

{

"lastName": "Doe",

"age": 18

},

{

"lastName": "Smith",

"age": 22

},

{

"lastName": "Jones",

"age": 20

}

]

}

• Let’s assume that the structure is
addressed by the variable data in a
Python program.

• data is a map containing two keys:
update and students.

• data["update"] is a string
representing a date.

• data["students"] is a list
containing 3 maps.

• data["students"][0] is the first
map in the list.

• data["students"][0]["age"] is the
value 18.



Data formats RESTful services

RESTful services

• REST: acronym for REpresentational State Transfer.

• Architectural style for distributed hypermedia systems.

• Firtly introduced by Roy Fielding in his dissertation (2000).

A Web API (or Web Service) conforming to the REST
architectural style is a REST API



Data formats RESTful services

REST principles: Uniform interface (1/6)

• Identification of resources: The interface must uniquely
identify each resource involved in the interaction between the
client and the server.

• Manipulation of resources through representations: The
resources should have uniform representations in the server
response; clients use these representations to modify the
resources state in the server.

• Self-descriptive messages: Each resource representation
should carry enough information to describe how to process
the message.

• Hypermedia as the engine of application state: The client
should have only the initial URI of the application; the client
application should dynamically drive all other resources and
interactions with the use of hyperlinks.



Data formats RESTful services

REST principles: Client-Server (2/6)

• Separation of concerns between the user interface concerns
(client) from the data storage concerns (server).

• Client and server components can evolve independently.

• Improvement of the portability of the user interface across
multiple platforms

• Improvement of the scalability by simplifying the server
components.

While the client and the server evolve, we have to make sure
that the interface/contract between the client and the server -

i.e., the API - does not change (break)



Data formats RESTful services

REST principles: Stateless (3/6)

• Statelessness requires that each request from the client to
the server must contain all of the necessary information to
understand and complete the request.

• The server cannot take advantage of any previously stored
context information on the server.

• For this reason, the client application must entirely keep the
session state.



Data formats RESTful services

REST principles: Cacheable (4/6)

• A response should implicitly or explicitly label itself as
cacheable or non-cacheable.

• If the response is cacheable, the client application gets the
right to reuse the same (cached) response data for equivalent
requests and a specified period.



Data formats RESTful services

REST principles: Layered system (5/6)

• An architecture to be composed of hierarchical layers by
constraining component behavior.

• In a layered system, each component cannot see beyond the
immediate layer they are interacting with.



Data formats RESTful services

REST principles: Code on Demand (Optional) (6/6)

• Client functionalities can be extended by downloading and
executing code in the form of applets or scripts.

• Servers can provide part of features delivered to the client in
the form of code, and the client only needs to execute the
code.

Clients are simplified since it reduces the number of features
that are required to be pre-implemented



Data formats RESTful services

Resources

• A resource can be any information that can be named (from
Roy Fielding’s dissertation)

• Alternatively: A resource is anything that’s important enough
to be referenced as a thing in itself.

A resource is an abstraction of information
managed by a REST API



Data formats RESTful services

Example of resources

Examples of resources:

• Version 1.0.3 of the software release

• The latest version of the software release

• The first weblog entry for October 24, 2006

• A road map of Little Rock, Arkansas

• Some information about jellyfish

• A directory of resources pertaining to jellyfish

• The next prime number after 1024

• The next five prime numbers after 1024

• The sales numbers for Q42004

• A list of the open bugs in the bug database

Source: L. Richardson, S. Ruby, “RESTful Web Services”, O’Reilly Media, 2007.



Data formats RESTful services

Resource representation

The state of the resource, at any particular time, is known as
the resource representation

The representation of a resource consists of:

• The data.

• The metadata describing the data.

• The hypermedia links that can help the clients in transition to
the next desired state.



Data formats RESTful services

Characteristics of resources: Identifiers (1/5)

Identifiers are used to identify each resource involved in the
interactions between the client and the server components.

Resources can be singletons or collections.

Examples:

• student is a singleton resource

• students is a collection resource (notice the plural)

Identifiers should refer to a resource that is a thing (noun)
instead of referring to an action (verb)



Data formats RESTful services

Characteristics of resources: URI (2/5)

Resources are represented and addressd using Uniform Resource
Identifiers (URIs).

Examples:

• https://api.mydomain.com/students

• https://api.mydomain.com/students/1

https://api.mydomain.com/students
https://api.mydomain.com/students/1


Data formats RESTful services

Characteristics of resources: URI (2/5)

Guidelines

Use lowercase letters
/MY-FOLDER/MY-DOC
/My-Folder/my-doc
/my-folder/my-doc

Separate multiple words
/studentmanagement/managedstudents
/student-management/managed-students

Do not use underscores
/student management/managed students
/student-management/managed-students

Do not use trailing forward slash (/) in URIs
/student-management/managed-students/
/student-management/managed-students



Data formats RESTful services

Characteristics of resources: sub-collections (3/5)

A resource may contain sub-collection resources.

Examples:

• /students/1/exams

• /students/1/exams/3



Data formats RESTful services

Characteristics of resources: Hypermedia (4/5)

• The media type is the data format of a representation.

• The media type identifies a specification that defines how a
representation is to be processed.

A RESTful API looks like hypertext: every addressable unit of
information carries an address, either explicitly (e.g., link and ID
attributes) or implicitly (e.g., derived from the media type
definition and representation structure).



Data formats RESTful services

Characteristics of resources: Self-description (5/5)

• Resource representations shall be self-descriptive.

• The client does not need to know if a resource is an employee
or a device.

• The client should act based on the media type associated with
the resource.

Every media type defines a default processing model. For example,
HTML defines a rendering process for hypertext and the browser
behavior around each element.



Data formats RESTful services

Object Modeling

Identify the objects that will be presented as resources

Running example with three resources:

• Students

• Courses (refers to all the courses available to all the students)

• Exams (an exam is associated to a student)

where:

• Exam is a sub-resource of a student.

• A student can be associated to many exams.

• All objects/resources have a unique identifier, which is the
integer id property.



Data formats RESTful services

Create Model URIs

/students

/students/{studId}

/courses

/courses/{courseId}

/exams

/exams/{examId}

/students/{studId}/exams

/students/{studId}/exams/{examId}



Data formats RESTful services

Determine Resource Representations (1/8)

Collection of students
{

"count": 2,

"total": 10234,

"self-url": "/students",

"students": [

{

"id": "12345",

"self-url": "/students/12345",

"first name": "John",

"family name": "Doe",

"birthdate": "1999-12-31",

"graduated": false

},

{

"id": "54321",

"self-url": "/students/54321",

"first name": "Jane",

"family name": "Doe",

"birthdate": "1999-01-01",

"graduated": true

}

]

}



Data formats RESTful services

Determine Resource Representations (2/8)

Single student resource
{

"id": "12345",

"self-url": "/students/12345",

"first name": "John",

"family name": "Doe",

"birthdate": "1999-12-31",

"graduated": false

"exams": [

{

"id": "345",

"self-url": "/exams/345",

"course": "Robotics",

"course-url": "/courses/1000",

"date": "2022-02-18",

"mark": 33

},

{

"id": "349",

"self-url": "/exams/349",

"course": "Systems for Industry 4.0 and environment (IoT)",

"course-url": "/courses/1001",

"date": "2022-03-03",

"mark": 33

},

...

]

}



Data formats RESTful services

Determine Resource Representations (3/8)

Collection resource of courses
}

"count": 2,

"total": 1532,

"self-url": "/courses",

"courses": [

{

"id": "1000",

"self-url": "/courses/1000",

"title": "Robotics",

"a/y": "2022-23",

"teacher": "Tullio Facchinetti",

"mandatory": false

},

{

"id": "1001",

"self-url": "/courses/1001",

"title": "Systems for Industry 4.0 and environment (IoT)",

"a/y": "2022-23",

"course-url": "/courses/1001",

"teacher": "Tullio Facchinetti",

"mandatory": true

}

]

}



Data formats RESTful services

Determine Resource Representations (4/8)

Collection resource of exams
{

"count": 2,

"total": 18451,

"self-url": "/exams",

"exams": [

{

"id": "345",

"self-url": "/exams/345",

"course": "Robotics",

"course-url": "/courses/1000",

"date": "2022-02-18",

},

{

"id": "349",

"self-url": "/exams/349",

"course": "Systems for Industry 4.0 and environment (IoT)",

"course-url": "/courses/1001",

"date": "2022-03-03",

},

...

]

}



Data formats RESTful services

Determine Resource Representations (5/8)

Single course resource
{

"id": "1001",

"self-url": "/courses/1000",

"title": "Systems for Industry 4.0 and environment (IoT)",

"a/y": "2022-23",

"teacher": "Tullio Facchinetti",

"laboratories": true,

"computers required": true,

"mandatory": true

}



Data formats RESTful services

Determine Resource Representations (6/8)

Single exam resource
{

"id": "349",

"self-url": "/exams/349",

"course": "Systems for Industry 4.0 and environment (IoT)",

"course-url": "/courses/1001",

"date": "2022-03-03",

"time": "9:30",

}



Data formats RESTful services

Determine Resource Representations (7/8)

Collection resource of exam under a single student
{

"count": 2,

"self-url": "/students/12345/exams",

"exams": [

{

"self-url": "/students/12345/exams/345",

"details": "/exams/345"

},

{

"self-url": "/students/12345/exams/349",

"details": "/exams/349"

}

]

}



Data formats RESTful services

Determine Resource Representations (8/8)

Single exam under a single student
{

"id": "349",

"self-url": "/students/12345/exams/349",

"course": "Systems for Industry 4.0 and environment (IoT)",

"exam-url": "/exam/349",

"date": "2022-03-03",

"mark": 33

}



Data formats RESTful services

Methods of RESTful services

Method Safe Idempotent Description

GET Y Y retrieves a representation of a
valid resource

POST N N process a representation of a
given request

PUT N Y update/create a resource iden-
tified by a request URI

DELETE N Y delete a resource identified by
the requested URI

• Safety: a request does not change the state of the system.

• Idempotency: multiple identical requests has the same effect
as making a single request.



Data formats RESTful services

Define HTTP calls and endpoints (1/6)

Access a list of primary resources

HTTP GET /students

HTTP GET /courses

HTTP GET /exams

If the collection size is large, paging and filtering can be applied.
For example, the following requests will fetch the first 10 records
from the collections:

HTTP GET /students?startIndex=0&size=10

HTTP GET /courses?startIndex=0&size=10

HTTP GET /exams?startIndex=0&size=10

The total field in the answer allows to evaluate the number of
queries required to retrieve all the information.



Data formats RESTful services

Define HTTP calls and endpoints (2/6)

Browse all exams under a student

HTTP GET /students/{studId}/exams

Browse a specific resource

HTTP GET /students/{studId}

HTTP GET /courses/{courseIf}

HTTP GET /exams/{examId}

Browse a single exam under a student

HTTP GET /students/{studId}/exams/{examId}



Data formats RESTful services

Define HTTP calls and endpoints (3/6)

Create an element of a primary resource

HTTP POST /students

HTTP POST /courses

HTTP POST /exams

• The HTTP POST method is not idempotent, thus it is fine
for this purpose

• The request does not need to specify any id, which will be
assigned by the service



Data formats RESTful services

Define HTTP calls and endpoints (4/6)

Update a primary resource

HTTP PUT /students/{studId}

HTTP PUT /courses/{courseId}

HTTP PUT /exams/{examId}

• The HTTP PUT method is idempotent, thus it is fine for this
purpose



Data formats RESTful services

Define HTTP calls and endpoints (5/6)

Remove a primary resource

HTTP DELETE /students/{studId}

HTTP DELETE /courses/{courseId}

HTTP DELETE /exams/{examId}

• A response for a successful operation should be 202
(Accepted) if the resource has been queued for deletion
(async operation), or 200 (OK) / 204 (No Content) if the
resource has been deleted permanently (sync operation).

• In case of async operation, the application shall return a task

id that can be tracked for success/failure status.

• Usually, a soft delete is preferable, i.e., where a resource is set
its status as DELETED instead of being actually removed.



Data formats RESTful services

Define HTTP calls and endpoints (6/6)

Apply a to an exam under a student

HTTP PUT /students/{studId}/exams/{examId}

Remove an exam under a student

HTTP DELETE /students/{studId}/exams/{examId}


	Data formats
	RESTful services
	RESTful services
	Design of a REST API


