
Introduction CoAP MQTT AMQP XMPP Comparison

Message Passing Protocols

Tullio Facchinetti
<tullio.facchinetti@unipv.it>

17 maggio 2023

http://robot.unipv.it/toolleeo

Introduction CoAP MQTT AMQP XMPP Comparison

Communication-centric IoT reference model (CIoT)

Source: E. Al-Masri et al., “Investigating Messaging Protocols for the Internet of
Things (IoT)”, in IEEE Access, vol. 8, 2020.

Introduction CoAP MQTT AMQP XMPP Comparison

Comparison of some data link layer protocols

Introduction CoAP MQTT AMQP XMPP Comparison

IoT application range requirements

Because of the diversity of IoT devices, there exists no single
communication technology that is capable of supporting
heterogeneous environments.

Introduction CoAP MQTT AMQP XMPP Comparison

Specifications, standards and alliances

Standards’ governing bodies and alliances that have been formed
for enhancing communication technologies for the IoT landscape.

Introduction CoAP MQTT AMQP XMPP Comparison

Specifications, standards and alliances: goals

• Initiatives, specifications and standards have different focuses
and target specific stakeholders or markets.

• Some initiatives address challenges for Business to Consumer
(B2C) or Business to Business (B2B) applications, others
were developed to accommodate specific vertical or horizontal
domains in the IoT landscape.

Introduction CoAP MQTT AMQP XMPP Comparison

Specifications, standards and alliances: goals

Examples:

• E.g., IEEE, ZigBee Alliance, ISO, CEN and ULE are all
organizations or alliances that have proposed standards or
specifications for a vertical domain that primarily focus on
solving a very specific area such as home and building
automation.

• IEC, ISO, oneM2M, OPC and OpenIndustry 4.0 Alliance
provide specifications or recommendations that are
domain-specific or solve problems within the manufacturing
and industrial automation vertical domain.

• W3C, ITU, OASIS, OMG, IETF and HyperCat provide
standards, specifications and recommendations for a broader
support of a number of IoT applications while encompassing
many different domains.

Introduction CoAP MQTT AMQP XMPP Comparison

Characteristics of initiatives or standards

1 Architecture

2 Communication

3 Security and privacy

4 Interoperability

5 Integration

6 Device types and sensor technology

7 Deployment models

8 Services’ provisioning

9 Application and device management

Some features are also supported by a number of
protocols that exist across the link and application layers.

Introduction CoAP MQTT AMQP XMPP Comparison

Guidelines to select a message passing protocol

• What are the system requirements and challenges that may
influence choosing an application protocol for IoT
development?

• What is the extent of the coverage of these challenges in
existing literature?

• Which communication types are covered by existing
application layer protocols?

• What factors were used or applied in conducting prior research
studies?

• What is the depth of the examined literature in terms of
coverage, comprehensibility and technical knowledge?

• What is the adoption rate of the existing protocols used for
IoT applications?

Introduction CoAP MQTT AMQP XMPP Comparison

Types of IoT Environment

1 Device-to-Device (D2D): the communication is provided
between two nodes or devices directly.

2 Device-to-Application (D2A): the communication is performed
between devices and an IoT application.

3 Device-to-Gateway (D2G): the communication is provided
through a gateway that resides in close proximity to the edge
of the network while interacting with IoT devices.

4 Device-to-Cloud (D2C): the communication is achieved
directly between IoT devices and cloud service providers.

Source: Souri et al., “A systematic review of IoT communication strategies for an
efficient smart environment”, Transactions on Emerging Telecommunications
Technologies, Aug. 2019.

Introduction CoAP MQTT AMQP XMPP Comparison

Support by platform providers

IoT platform Year F.A. Protocols
Azure IoT Hub 2014 HTTP(S), MQTT, MQTT over WebSoc-

ket, AMQP, AMQP over WebSocket, custom
protocols via gateway

Google IoT Core 2018 HTTP(S), MQTT, custom protocols via gateway
IBM Watson IoT 2014 HTTP(S), MQTT, MQTT over WebSocket,

WebSocket
AWS IoT Core 2015 HTTP(S), MQTT, MQTT over WebSocket
Alibaba IoT 2015 HTTP(S), CoAP, MQTT, MQTT over WebSoc-

ket, WebSocket, network types: 3G, 4G, NB-IoT,
LoRa

Oracle IoT 2016 HTTP(S), CoAP, MQTT, AMQP, XMPP,
WebSocket

Siemens MindSphere 2016 HTTP(S), CoAP, MQTT, AMQP, XMPP, tho-
rugh gateways: OPC UA, LoRaWAN, Modbus,
6LoWPAN, LwM2M

Bosch IoT Hub 2017 HTTP(S), MQTT, AMQP, LoRaWAN
Cisco Kinetic 2017 HTTP(S), MQTT, AMQP, WebSocket, custom

protocols via gateways
Eclipse Hono 2018 HTTP(S), CoAP, MQTT, AMQP, custom

protocols via gateways

Introduction CoAP MQTT AMQP XMPP Comparison

Support by platform providers

Introduction CoAP MQTT AMQP XMPP Comparison

Support by platform providers

Introduction CoAP MQTT AMQP XMPP Comparison

Constrained Application Protocol (CoAP)

• Web transfer protocol intended for devices running on
constrained networks (e.g., low-power, lossy).

• Designed for Machine-to-Machine (M2M) applications, e.g.
factory automation, smart energy.

• Request-response interaction model.

• Uses major concepts from the web such as Uniform Resource
Identifiers (URIs) and Internet media types.

• Used over the UDP transport protocol using the coap scheme
and over Datagram Transport Layer Security (DTLS) using
the coaps scheme.

• Defined in RFC 7252 (and several extensions).

CoAP aims to bridge HTTP and RESTful services
through simple interfacing

Introduction CoAP MQTT AMQP XMPP Comparison

CoAP stack

Application

Request/response

Messages

DTLS

UDP

CoAP

Datagram Transport
Layer Security

User Datagram
Protocol

• The Messages layer deals with UDP and with asynchronous
messages.

• The Request/Response layer manages request/response
interaction based on request/response messages.

Introduction CoAP MQTT AMQP XMPP Comparison

Types of messages

Message type Bits Code Description

Confirmable 00 CON An acknowledgement is
required; this improves the
reliability of the UDP protocol

Non-confirmable 01 NON Acknowledgement is not
required, leading to less
reliable messages

Acknowledgment 10 ACK Contains the acknowledgement
of a previous message

Reset 11 RST Indicates that a message was
received but it could not be
processed

Introduction CoAP MQTT AMQP XMPP Comparison

Message model: Confirmable messages

Client Server

CON (ID: 0xAB05)

ACK (ID: 0xAB05)

• A Confirmable message (CON) is a reliable message.

• The sending of a Confirmable message is repeated until the
other party sends back an Acknowledge message (ACK).

• The ACK message contains the same ID of the CON message.

• This overcomes the unreliability of UDP messages.

Introduction CoAP MQTT AMQP XMPP Comparison

Message model: Reset messages

Client Server

CON (ID: 0xAB05)

RST

• If the server has troubles managing the incoming request, it
can send back a Reset message (RST) instead of the
Acknowledge message (ACK).

• The client stops sending its requests.

Introduction CoAP MQTT AMQP XMPP Comparison

Message model: Non-confirmable messages

Client Server

NON (ID: 0xAB05)

• Non-confirmable messages (NON) do not require an
Acknowledge by the server.

• NON messages are unreliable messages; they can be used for
non-critical information that must be delivered to the server.

• Values read from sensors typically belong to this category.

• Even if unreliable, NON messages have a unique identifier.

Introduction CoAP MQTT AMQP XMPP Comparison

Request/Response model

• The CoAP Request/Response is the second layer in the CoAP
abstraction layer.

• The request is sent using a Confirmable (CON) or
Non-Confirmable (NON) message.

There are several scenarios depending on if the server can answer
immediately to the client request or the answer if not available.

Introduction CoAP MQTT AMQP XMPP Comparison

Request/Response model

Client Server

CON (ID: 0xAB05)
GET /Temperature

Token 0x15

Token 0x15

ACK (ID: 0xAB05)
21.1 C

• If the server can answer immediately to the client request
AND the request was made using a CON message, the server
sends back to the client an ACK message containing the
response or the error code.

• The Token is used to match the request and the response.

• The Token is different from the Message identifier.

Introduction CoAP MQTT AMQP XMPP Comparison

Request/Response model

Client Server

CON (ID: 0xAB05)
GET /Temperature

Token 0x15

Token 0x15

ACK (ID: 0xAB05)

ACK (ID: 0xAB06)

CON (ID: 0xAB06)
21.1 C

• If the server can not answer immediately, then it sends an
ACK message with an empty response.

• As soon as the response is available, the server sends a new
CON message to the client containing the response, with the
corresponding Token.

• The client replies with an ACK message.

Introduction CoAP MQTT AMQP XMPP Comparison

Request/Response model

Client Server

NON (ID: 0xAB05)
GET /Temperature

Token 0x15

Token 0x15

NON (ID: 0xAB06)
21.1 C

• If the request coming from the client is carried using a
NON-confirmable message, then the server answer using a
NON-confirmable message.

• The Token is used to match the two messages.

Introduction CoAP MQTT AMQP XMPP Comparison

Message format

• Version (2 bits): version number of the CoAP protocol.

• Type (2 bits): message type (CON, ACK, NON, RST).

• Token length (4 bits): size of the variable-length Token field.

• Request/response code (8 bits): divided into Class (3 bits) and Code (5
bits) (see next slide).

• Message ID (16 bits): Used to detect message duplication and to match
messages.

• Token (variable): used to match requests and responses.

Introduction CoAP MQTT AMQP XMPP Comparison

Message format

Requests/responses codes.
The format is class.code

Method: 0.XX
0 - EMPTY
1 - GET
2 - POST
3 - PUT
4 - DELETE
5 - FETCH
6 - PATCH
7 - iPATCH

Success: 2.XX
1 - Created
2 - Deleted
3 - Valid
4 - Changed
5 - Content
31 - Continue

Client Error: 4.XX
0 - Bad Request
1 - Unauthorized
2 - Bad Option
3 - Forbidden
4 - Not Found
5 - Method Not Allowed
6 - Not Acceptable
8 - Request Entity Incomplete
9 - Conflict
12 - Precondition Failed
13 - Request Entity Too Large
15 - Unsupported Content-Format

Server error: 5.XX
0 - Internal server error
1 - Not implemented
2 - Bad gateway
3 - Service unavailable
4 - Gateway timeout
5 - Proxying not
supported

Signaling Codes: 7.XX
0 - Unassigned
1 - CSM
2 - Ping
3 - Pong
4 - Release
5 - Abort

Introduction CoAP MQTT AMQP XMPP Comparison

Message Queuing Telemetry Transport (MQTT)

• Publish-subscribe lightweight messaging protocol designed for
constrained devices.

• Protocol that is designed for unreliable networks or
intermittent connectivity.

• Exchange of data with the cloud in a real-time manner.

• Very popular and widespread for IoT and M2M applications.

• OASIS standard.

Introduction CoAP MQTT AMQP XMPP Comparison

MQTT protocol stack

Application

MQTT

TCP

IP

A variant MQTT-SN (Sensor Networks) can use other transport
protocols such as UDP or Bluetooth.

Introduction CoAP MQTT AMQP XMPP Comparison

MQTT model

• Broker: a server that receives the data from publishers and
forwards it to the interested subscribers.

• Publisher: a client that sends data to the Broker.

• Subscriber: a client that is registered on the Broker to
receive updates from specific sources.

Introduction CoAP MQTT AMQP XMPP Comparison

MQTT topics

• The word “topic” refers to an UTF-8 string that the broker
uses to filter messages for each connected client.

• The topic is the subject that identifies a data exchange.

• The topic consists of one or more topic levels.

• Each topic level is separated by a forward slash (topic level
separator).

Examples of topics:

home/first-floor/kitchen/humidity

Italy/Lombardy/Milan/Bicocca

France/Paris/taxi/12748237349723422/longitude

5cc4a8cf-e485-6f30-c728-02398ddcab/status

Introduction CoAP MQTT AMQP XMPP Comparison

MQTT message model

Client A Client BBroker

CONNECT

CONNACK

SUBSCRIBE "/temp"

SUBACK

PUBLISH "/temp"

PUBACK

PUBLISH "/temp"

PUBACK

Example of interaction among Broker,
Subscriber (Client A) and Publisher (Client B)

Introduction CoAP MQTT AMQP XMPP Comparison

MQTT message format

Control
Header

1 byte 1 to 4 bytes

Fixed header

always present

not always
present

not always
present

0-Y bytes 0-X bytes

PayloadPacket
Length

Variable
Length Header

• The size of the Variable Length Header depends from the
message type.

• The payload contains the data to send.

• The payload may not be present (e.g., CONNACK does not
have payload).

Introduction CoAP MQTT AMQP XMPP Comparison

Considerations on scalability

• n : number of clients of an MQTT broker.

• topics : average number of topics subscribed by each client.

Number of message transmissions (throughput):

nmsg = n · topics

Worst case: topics = n (every client subscribes every topic):

nmsg = n2

Total time time to deliver the messages:

time = nmsg · tmsg

where tmsg is the average time required to send a single message.

Introduction CoAP MQTT AMQP XMPP Comparison

Considerations on scalability: numerical example

• n = 100

• topics = 10

Number of message transmissions (throughput):

nmsg = n · topics = 100 · 10 = 1000

Worst case: topics = n = 100:

nmsg = 100 · 100 = 10000

Total time time to deliver the messages with tmsg = 10ms:

average time = 1000 · 10ms = 10000ms = 10sec

worst time = 10000 · 10ms = 100000ms = 100sec = 1.67min

Introduction CoAP MQTT AMQP XMPP Comparison

Advanced Message Queuing Protocol (AMQP)

• Lightweight but extensible messaging protocol designed for
M2M messaging.

• Binary, application layer protocol.

• Generally used in corporate environments.

• Focuses on interoperability.

• Support for both request-response and publish-subscribe
models.

• OASIS and ISO standard.

Introduction CoAP MQTT AMQP XMPP Comparison

Message distribution model

• Exchange: a routing agent that runs on a virtual host
residing on a broker’s server.

• Queue: named FIFO buffer that stores messages on behalf of
applications temporarily.

• Bindings: relationships between message exchanges and
message queues.

Introduction CoAP MQTT AMQP XMPP Comparison

Types of message exchanges: direct

Direct message type
• An exchange forwards incoming messages to queues based on
the routing key associated with each message.

• Each binding contains a binding key.

• A publisher provides a routing key for each message sent to
the direct exchange.

• A message passes through a message queue when the binding
key from the message queue is identical (i.e. exact matching)
to that of the publisher’s message routing key.

• This method is used to implement point-to-point messaging.

• In cases the binding key is associated with multiple queues, it
implements multicasting operations.

Introduction CoAP MQTT AMQP XMPP Comparison

Types of message exchanges: topic (1/3)

Topic message type
• The routing key is considered as a routing pattern, i.e., a
topic.

• The routing key is fixed.

• The routing pattern in the topic exchange allows the use of
wildcards.

• A publisher sends a message to the topic exchange providing a
routing key.

• The message then passes to the queue if the routing pattern
matches that of the routing key.

• This method implements a publish/subscribe messaging
pattern.

Introduction CoAP MQTT AMQP XMPP Comparison

Types of message exchanges: topic (2/3)

Topic message type
• Each keyword is delimited by a period (“.”).

• The * is used to match a single keyword.

• The # is used to match zero or more keywords.

Generalization of other message types:

• When only the “#” binding key is used, the queue receives all
the messages, regardless of the routing key → fanout
exchange.

• When neither “*” and “#” are used in bindings → direct
exchange.

Introduction CoAP MQTT AMQP XMPP Comparison

Types of message exchanges: topic (3/3)

Examples of topics:

unipv.engineering.robotics (1)
unipv.mathematics.analysis (2)
unibic.engineering.iot (3)
unimi.engineering.iot (4)

Examples of binding keys:

Binding key Corresponding topic

unipv.# 1, 2
*.engineering.iot 3, 4
#.iot 3, 4
.engineering. 1, 3, 4
unipv.engineering.robotics 1
1, 2, 3, 4

Introduction CoAP MQTT AMQP XMPP Comparison

Types of message exchanges: fanout

Fanout message type
• This method does not require routing keys for binding
messages to queues.

• Messages are broadcasted to all subscribers unconditionally.

• Used to asynchronously broadcast event notifications to all
endpoints.

Introduction CoAP MQTT AMQP XMPP Comparison

Types of message exchanges: header

Header message type
• The exchange forwards the message to a queue based on
arguments or properties specified in the header of a message.

• X-match expressions can logically combine multiple
properties with AND and OR conditions.

Introduction CoAP MQTT AMQP XMPP Comparison

Extensible Messaging & Presence Protocol (XMPP)

• Originally known as Jabber in 2002, standardized in 2011.

• Client/server architecture initially designed to provide
application with instant messaging capabilities.

• Uses XML as the underlying data exchange format (larger
overhead w.r.t. binary protocols).

• Runs over TCP/IP.

• XML fragments transmitted by XMPP, and used for basic
communication, are called stanzas.

• Point-to-point encryption by Transport Layer Security (TLS)
is built-in in the specifications.

Introduction CoAP MQTT AMQP XMPP Comparison

XMPP identifiers

XMPP entities are associated with Jabber IDs (JIDs) in the form
of an email address with a fully qualified domain name and/or a
valid resource.

xmpp user@xmpp server/resource

• xmpp user is the client’s username.

• xmpp server is a fully qualified domain name.

• resource is an identifier used to identify the client’s device
on the network.

Bare JID : address without the resource.
Full JID : JID that includes a resource identifier.

Multiple resources (i.e. full JIDs) can be associated with one
username indicating different devices used or associated with the
same “account” or user.

Introduction CoAP MQTT AMQP XMPP Comparison

XMPP architecture

• Device-to-device communication is not allowed.

• XMPP servers can form a federation: servers acknowledges
each others over the same network.

Introduction CoAP MQTT AMQP XMPP Comparison

Comparison (1/3)

Feature CoAP MQTT AMQP XMPP

Year
introduced

2013 1999 2003 2002

Standardized 2014 (ongoing) 2013 2014 2004

Messaging
pattern

request/response publish-subscribe
request/response;
publish-subscribe

request/response;
publish-subscribe

Architecture tree tree star client-server

Transport UDP TCP TCP TCP

Network layer IPv6 IPv4 or IPv6 IPv4 or IPv6 IPv4 or IPv6

M2M commu-
nication
Asynchronous
messaging
Transaction
support
Extensibility

Introduction CoAP MQTT AMQP XMPP Comparison

Comparison (2/3)

Feature CoAP MQTT AMQP XMPP

Data
prioritization
QoS support

Message
caching
Message
caching
RESTful (observe option)

Dynamic
discovery
QoS levels 2 levels 3 levels 3 levels none

Communica-
tion scope

Device to cloud Device to cloud
Device to device;
Device to cloud;
Cloud to cloud

Device to cloud;
Cloud to cloud

Addressing URI topic only
queue, topic, routing

key
Jabber identification

Filtering Resource identifier Topic Queue
{user: to, from},
type, iq, presence

packets

Introduction CoAP MQTT AMQP XMPP Comparison

Comparison (3/3)

Feature CoAP MQTT AMQP XMPP

Security DTLS, IPSec TLS SASL/TLS SASL/TLS

Interoperabili-
ty

Semantic Foundational Structural Structural

Header size 4 byte 2 byte 8 byte Variable

Data
distribution

1-to-N; N-to-1 1-to-N; N-to-N 1-to-1; N-to-N 1-to-1; N-to-N

Encoding Binary Binary Binary Text

Low-Power
and Lossy

Excellent Good Good Fair

Payload
format

JSON, XML unclear unclear XML

Max message
size

64 Kb (UDP) 256 Mb
Undefined

(RabbitMQ: 512
Mb)

Undefined; 64 Kb
(stanza size)

Governing
body

IETF OASIS OASIS IETF

	Introduction
	Introduction

	CoAP
	MQTT
	AMQP
	XMPP
	Comparison

