Origin of Internet

ISO/OSI model

Overview of an IoT System

Internet of Things Networking Protocols and Standards Introduction

Tullio Facchinetti <tullio.facchinetti@unipv.it>

Tuesday 21st February, 2023

http://robot.unipv.it/toolleeo

A large network has a hierarchical structure

Origin of Internet

SO/OSI model

Overview of an IoT System

Packet communication

In a data network, information is cut into chuncks called **packets**

Packets are composed by two parts:

- Payload: containing the data to exchange.
- Header: for network and control purpose.

Origin of Internet

SO/OSI model

Overview of an IoT System

Packet communication

Rules are necessary to correctly and uniquely interpret a packet

\Rightarrow PROCOTOLS

Protocol specification:

- Operates between the same layer on two systems.
- May involve different operating system.
- Protocol specification must be precise:
 - Format of data units.
 - Semantics of all fields.

Service definition:

• Functional description of what is provided.

Introduction	Origin of Internet	ISO/OSI model	Overview of an IoT System
000000000	00	00000000000	
Protocols define ir	nterfaces		

Between nodes

Origin of Internet

ISO/OSI model

Overview of an IoT System $_{\rm OOO}$

Protocols define interfaces

Between functions and services

- All functions required to set up and maintain a connection are split into different layers.
- Each layer is characterized by its own rules and features.

Introduction
0000000000

SO/OSI model

Overview of an IoT System

Layers at work

SDU = **Service Data Unit** : a unit of data that has been passed down from a layer or sublayer to a lower layer.

Introduction	
00000000000	

ISO/OSI model

Overview of an IoT System

Core vs Edge

Core has servers

Origin of Internet

Overview of an IoT System

System model

Client

- Issues requests ۲
- Consumes/presents responses
- Receives alerts

Server

- Manages embedded devices
- Collects and processes readings and events
- Presents embedded services
- Services requests

Wireless Sensor Device

- Takes measurements and actions
- Application-specific local processing
- Communicates over I oWPAN
- Routes (for others)
- Processes commands

Wireless Embedded Network

Origin of Internet

ISO/OSI model

Overview of an IoT System $_{\rm OOO}$

Standards for machine communication

- Cabled Networks: Ethernet (32 variants!), HomePlug, HomePlugAV
- Point-to-Point: DisplayPort, DVI, FireWire, HDMI, SCART, USB
- Field Buses: Ethercat, PROFIbus, BACnet, BatiBUS, EHS, KNX / EIB, LON, X10
- Wireless Networks: WLAN, Bluetooth, DECT, HomeRF ZigBee, Z-Wave, EnOcean
- Network Protocols: AFP, BitTorrent, Bonjour/Zeroconf, CalDAV, CUPS, DHCP, DNS, DPWS, DynDNS, FTP, HTTP, IMAP, IPP, IRC, JetDirect, LDAP, LPR, NAT-PMP, NFS, OMA DM, POP3, RTP, RTSP, SIP, SMB, SMTP, SNMP, SSDP, SSH, TFTP, TR-069, UPnP, WebDAV, CHAIN/AIS, SML
- Medical: aECG, CCD, CCR, CDA, DICOM, EDF, EDIFACT, HL7, IHE, ISO/EN 13606, ISO/IEEE 11073, PHMR, SCP-ECG, xDT, XPHR, ICD-10, ICHI, ICPM, LOINC, OPS, SNOMED, UCUM, UMLS
- Runtime: OSGi, MIDP
- Middleware: URC, UniversAAL, oneM2M

Origin of Internet

SO/OSI model

Overview of an IoT System $_{\rm OOO}$

About all such options...

"the nice thing about standards is that there are so many to choose from."

Andrew S. Tanenbaum

Origin of Internet

ISO/OSI model

Overview of an IoT System

Internet (Arpanet) in 1973

Introduction
0000000000

SO/OSI model

Overview of an IoT System

Evolution of the Internet

© ETSI 2014. All rights reserved

Introduction
0000000000

Key characteristics

- All nodes have computation and communication capabilities of varying degrees
- There are several intermediaries between communication end points who may use different protocols across all layers of the OSI stack
- Any node is uniquely addressable from any other system
- Any node can offer a service. Additionally it can discover and consume any service offered by another node
- Nodes and services do not exist in isolation
- Any node can align itself with a logical network

Origin of Internet

ISO/OSI model

Overview of an IoT System $_{\rm OOO}$

The ISO OSI model

ISO: International Standards Organization OSI: Open Systems Interconnection Reference Model (1984)

Origin of Internet

ISO/OSI model

Overview of an IoT System

Layer 1: Physical Layer

Application	
Presentation	
Session	
Transport	
Network	
Data link	
Physical	

Responsibilities:

- Defines the physical interface between devices
- Handles the transmission of raw bits Issues:
 - mechanical and electrical interfaces
 - time per git
 - distance

Origin of Internet

ISO/OSI model

Overview of an IoT System

Layer 2: Data Link Layer

Application	
Presentation	
Session	
Transport	
Network	
Data link	
Physical	

Responsibilities:

- Manages the reliable transfer of information between **adjacent** nodes
- Frame-level error control
- Control of flow

lssues:

- framing (dividing data into chuncks with header and trailer bits)
- addressing

Origin of Internet

ISO/OSI model

Overview of an IoT System

Layer 3: Network Layer

Application	
Presentation	
Session	
Transport	
Network	
Data link	
Physical	

Responsibilities:

• Path selection between end systems (dynamic/fixed routing)

Issues:

- fragmentation and reassembling
- translation between different network types

Origin of Internet

ISO/OSI model

Overview of an IoT System $_{\rm OOO}$

Layer 4: Transport Layer

Application	
Presentation	
Session	
Transport	
Network	
Data link	
Physical	

Responsibilities:

- virtual end-to-end links between peers
- end-to-end flow control

lssues:

- headers
- error detection
- reliable communication

Origin of Internet

ISO/OSI model

Overview of an IoT System

Layer 5: Session Layer

Application	
Presentation	
Session	
Transport	
Network	
Data link	
Physical	

Responsibilities:

- establishes, manages and terminates a communication session between systems
- groups several user-level connections into sessions

lssues:

 several protocols do not include a session layer

Origin of Internet

ISO/OSI model

Overview of an IoT System

Layer 6: Presentation Layer

Application	
Presentation	
Session	
Transport	
Network	
Data link	
Physical	

Responsibilities:

- represents data properly
- data encryption
- data compression
- data conversion

Issues:

 several protocols do not include a presentation layer

Origin of Internet

ISO/OSI model

Overview of an IoT System

Layer 7: Application Layer

Application
Presentation
Session
Transport
Network
Data link
Physical

Responsibilities:

- anything not provided by other layers
- implement communications between two applications of the same type

Examples:

• HTTP, FTP, SMTP/POP3/IMAP

Origin of Internet

ISO/OSI model

Overview of an IoT System $_{\rm OOO}$

ISO OSI model vs TCP/IP model

Some protocol stacks have a simplified organization w.r.t. the full ISO OSI model

Source: https: //networkengineering.stackexchange.com/questions/24360/what-is-the-osi-session-layer-5-used-for

Introduction 000000000	Origin of Internet	ISO/OSI model ooooooooooooo	Overview of an IoT System

Data flow of the Internet Protocol Suite

Data Flow of the Internet Protocol Suite

Source: https://commons.wikimedia.org/wiki/File:Data_Flow_of_the_Internet_Protocol_Suite.PNG

Introd	uction
0000	000000

ISO/OSI model

Overview of an IoT System

Network topology

ISO/OSI model

Overview of an IoT System

The IoT ecosystem

Services	Energy, Enterteinment, Health, Education, Transportation,		
Apps and SW	SDN, SOA, Collaboration, Apps, Cloud		
Analytics	Data mining, machine learning, predictive analytics,		ent
Integration	Sensor data, Economic, Population, GIS,	ecurity	Jagem
Interconnection	WiFi, Bluetooth, ZigBee, NFC,	0	Mai
Acquisition	Sensors, cameras, GPS, Meters, Smartphones,		
Market	Smart grid, smart buildings, smart health, smart cities,		

The focus of the course is on the interconnection layer

IoT layers

IoT protocols operates at different layers of the networking stack. The following ones will be considered:

- Medium Access Control (MAC) layer
- Network layer
- Session layer

Introduction
0000000000

ISO/OSI model

Overview of an IoT System $\circ \circ \bullet$

IoT protocols

Session		MQTT, SMQTT, CoRE, DDS, AMQP, XMPP,	Security	Management
		CoAP, ZeroMP,	TCG, Oauth 2.0,	IEEE 1905, IEEE 1451
Network	Encapsulation	6LowPAN, 6TiSCH, 6Lo, Thread,	SMACK, SASL, ISASecure, ace, DTLS, Dice,	
	Routing	RPL, CORPL CARP,		
Datalink		WiFi, Bluetooth Low Energy, Z-Wave, ZigBee Smart, DECT/ULE, 3g/LTE, 5G, NFC, Weightless, HomePlug, GP, 802.11ah, 802.15.4e, G.9959, WirelessHART, DASH7, ANT+ LTE-A, LoRaWAN,		