Daily Shaarli

All links of one day in a single page.

01/09/23

Commentary: Cory Doctorow: Social Quitting

As I type these words, a mass exodus is underway from Twitter and Facebook. After decades of eye-popping growth, these social media sites are contracting at an alarming rate.

In some ways, this shouldn’t surprise us. All the social networks that preceded the current generation experienced this pattern: SixDegrees, Friendster, MySpace, and Bebo all exploded onto the scene. One day, they were sparsely populated fringe services, the next day, every­one you knew was using them and you had to sign up to stay in touch. Then, just as quickly, they imploded, turning into ghost towns, then punchlines, then forgotten ruins.

How Organisms Come to Know the World: Fundamental Limits on Artificial General Intelligence

Artificial intelligence has made tremendous advances since its inception about seventy years ago. Self-driving cars, programs beating experts at complex games, and smart robots capable of assisting people that need care are just some among the successful examples of machine intelligence. This kind of progress might entice us to envision a society populated by autonomous robots capable of performing the same tasks humans do in the near future. This prospect seems limited only by the power and complexity of current computational devices, which is improving fast. However, there are several significant obstacles on this path. General intelligence involves situational reasoning, taking perspectives, choosing goals, and an ability to deal with ambiguous information. We observe that all of these characteristics are connected to the ability of identifying and exploiting new affordances—opportunities (or impediments) on the path of an agent to achieve its goals. A general example of an affordance is the use of an object in the hands of an agent. We show that it is impossible to predefine a list of such uses. Therefore, they cannot be treated algorithmically. This means that “AI agents” and organisms differ in their ability to leverage new affordances. Only organisms can do this. This implies that true AGI is not achievable in the current algorithmic frame of AI research. It also has important consequences for the theory of evolution. We argue that organismic agency is strictly required for truly open-ended evolution through radical emergence. We discuss the diverse ramifications of this argument, not only in AI research and evolution, but also for the philosophy of science.

Object Oriented C Programming

The art of good programming depends upon the discipline of the programmer, no matter what language is being used. The purpose of object oriented programming (OOP) is to produce well designed reusable code. In principle OOP can be done in any language, even assembly. This is because all OO language compilers/assemblers (e.g. C++) ultimately translate the high level constructs of the language into machine language. Thus there is a mapping from an object oriented semantics onto the instruction and data arrays that are executable images.

Here we will present a design and implementation method for producing OO code in the C language. It turns out that using this methodology will strongly improve your overall program design and implementation just as you expect when programming in a native OO language like Java or C++. When working in C, however, the discipline applied to producing good designs comes from the programmer and not from the language itself.