
Robotics
Image sensors

Tullio Facchinetti
<tullio.facchinetti@unipv.it>

Tuesday 13th December, 2016

http://robot.unipv.it/toolleeo

Image and science

the visual observation is of paramount importance
in all scientific activities

in the past, in the absence of automatic image processing, the only
way to represent something was the verbal description or making
pictures

there were no automatic tools to qualitatively describe an object, a
process or a result

a nice example is made by the biology, which include ecology,
zoology, botany, etc.

Describing animals and vegetables

before the advent of image acquisition and processing

Image processing

some applications that opened the door to the use of image
processing in the scientific domain are

• astronomy: to measure the position of stars

• photogrammetry: to obtain the shape, position and
orientation of objects

• particles physics: to discover new particles from the analysis
of images acquired during experiments

in few year, the use of image processing
became ubiquitous

The image processing nowadays

the factors that contributed to the wide adoption of image
processing techniques are:

• powerful and cheap computing system

• established image processing methods and algorithms

• standard multimedia hardware (e.g. GPUs) and software
(libraries, e.g. OpenCV) components

• a technology available to every scientist or engineer

the application of image processing techniques
encompasses almost all possible scientific fields

Applications of image processing

typical applications are:

• detection and counting objects

• classification (biometry, surveillance, etc.)

• reconstruction of 3D environments (mapping, etc.)

• human feedback in remote operations (surgery, drone piloting,
etc.)

• multimedia

• control of autonomous robots

the image processing is one of the most versatile sensory
technique, providing the richest kind of information

Applications of image processing

Applications of image processing

Applications of image processing

Images in computer science

there are some different disciplines in the IT domain that involve
the use of images:

• visual computing: multimedia processing, often integrating
image, audio and video processing

• computer graphics: generation of images starting from
information regarding the objects in the scene

• image processing: extraction of features associated to
objects captured in the image

Involved research disciplines

there are several scientific domains that are very important for the
image processing:

• optics (lens and other optical effects)

• solid state physics (interaction between photons and
materials)

• micro-electronics (design and manufacturing of sensing chips)

• computer architecture (for fast computing)

• algebra (rotations, translations, and other operations)

• graph theory (in image processing)

• numerical analisys (e.g., optimization algorithms)

• etc.

Images and image sensors

• the image is composed by a matrix of colored points, called
pixels (picture elements)

• each pixel is represented by its coordinate and its color

0 0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 0 00

1 1 1 1 1 1 1

1

1

1

1

1

1

resolution

the amount of pixels in a given area, often expressed as the
number of pixels on the two axis

Image sensors

features of an image sensor:

• different resolutions available, from 5 Mpxl of common
cameras to 39+ Mpxl of expensive devices

• frame rates of 500+ frame-per-second (FPS)

• not limited to the visible spectrum (infrared, ultraviolet, X-ray)

there are two types of sensors available to capture an image:

• CCD – Charged Coupled Device

• CMOS – Complementary Metal Oxid Semiconductor

all sensors are based on a matrix of photo-sensors,
but they have different design technologies

and (therefore) different features

The CCD sensor

CCD = Charged Coupled Device

source: Wikipedia

in the CCD technology, the output of the transducer is an analog
signal, which is processed by a decoupled logic component

The CCD technology

Camera Circuit Board

digital

signal

analog

signal

electron−to−voltage
conversion

photon−to−electron
conversion

Charge Couple Device

timing

generation

bias

generator

analog−to−digital

conversion
gain

oscillator

clock

driver

image

The CCD sensor

the acquisition requires two steps:

exposure (accumulation) phase:

• each photoactive area collects electric charges due to the
absorption of photons

• the charge is proportional to the intensity of the light

readout phase:

• the charges are sequentially carried out from the component

• the charge is translated into a voltage and properly amplified

Full-Frame Transfer

read−out register

• the sensing area is a matrix
of sensing elements

Full-Frame Transfer

• an horizontal readout shift
register receives the charges
row-by-row

• during this phase, the
sensing elements are still
exposed to the light

Full-Frame Transfer

• each readout may take
around 65µs per row
(strongly technology
dependent, though)

Full-Frame Transfer: smearing effect

source: Wikipedia

Full-Frame Transfer: smearing effect

• it is due to the collection of charges during the vertical shift

• to eliminate it, a fast vertical shifting would be needed

however...

• a fast vertical shifting would require a faster readout

• and a fast readout implies a faster reading of the amount of
charge

however...

• a short charge collection time leads to higher measurement
errors and noise

Frame Transfer

read−out register

• there is a double area of cells

• the above area is the sensing
element

• the lower area is a shielded
memory that receives the
charge from sensors

Frame Transfer

read−out register

• first, the whole frame is
transferred in a dark area,
protected by incident light

• this operation takes place
every 20ms

• it may require around 500µs

Frame Transfer

• the vertical shifting brings
each line of charges into the
readout register

• even thought the sensors
continue to accumulate
charges, these latter are
transferred with no
interference

Frame Transfer

• the serial readout is done
row-by-row

• each readout takes around
65µs per row

Frame Transfer

pros

• fill factor (percentage of area available for the sensing
elements) close to 100%

• for sufficiently long exposure times, there is no need of
electro-mechanical shutter, which is obtained electronically

cons

• requires twice of the silicon surface w.r.t. the Full Frame
Transfer

• not suitable for very short exposure times

Interline Transfer

read−out register

• the columns are interleaved
with vertical shift registers

• the sensing area (fill factor)
is reduced

Interline Transfer

read−out register

• initially, the charge is
transferred into the vertical
shift registers

• this transfer can take around
2.5µs

Interline Transfer

• the charges are shifted
row-by-row in the horizontal
readout register

• there is no interference from
newly collected charges

Interline Transfer

• the serial readout is done
row-by-row

• this operation takes around
65µs per row

Interline Transfer

cons:

• reduced fill factor w.r.t. Full Frame and Frame Transfer
technologies

pros:

• no need of electromechanical shutter

• during the years, the fill factor increased from 50% up to 90%

The CMOS technology

Complementary Metal Oxid Semiconductor Camera Circuit Board

photon−to−electron
conversion

electron−to−voltage
conversion

digital

signal

analog−to−digital

conversion

bias

generator
oscillator

gain

c
o

lu
m

n
 a

m
p

lif
ie

r

row driver / access
clock

driver

timing

generation

bias

decoupling

connector

image

The architecture of one sensing element

this is the circuit composing a CMOS sensing cell using 3
transistors

M

M

V
COL

V

MRST

ROW

dd dd

rst

sf

sel

• photo-diode

• Mrst is the reset transistor

• Msf is the amplifier in
source follower configuration
that collects the charges

• Msel is the row selector

nowadays, there are technologies using 4, 5 or 6 transistors per
sensing element

Image scanning: windowing

• a rectangular window can be read

• position and size of the window are arbitrarily selectable

Image scanning: subsampling

• pixels are discarded with a regular pattern during the
acquisition

• automatic reduction of the resolution

• lower resolution −→ less pixels to read −→ higher frame-rate

Image scanning: random access

• each single pixel can be accessed

• saturated pixels can be individually reset

Image scanning: binning

• a set of adjacent pixels can be grouped into a bigger
“aggregated” pixel

• this method can be also used with CCDs

CCD vs CMOS

• CMOS has a lower quality w.r.t. CCD, especially in case of
low illumination

• CMOS requires less power (up to 100 times less)

• the CCD technology is preferred in high-end applications
(scientific and military domains), where quality is preferred to
costs and power consumption

• the CMOS technology allows faster acquisitions, so that it can
be used for video recording

• CMOS allows direct access to sub-areas of the image

• CMOS is cheaper than CCD thanks to the integration of
circuits

Effect of the sampling noise

• the wave-length of the visible spectrum is in the range
400-750 nm

• in 8-12 Mpxl sensors, the photo-sensor has size of around
5-6 µm

• the size of the photo-sensor is close to the wave-length

• the reduction of the photo-sensor size reduces the number of
captured photons

→ the amount of noise increases (the S/N ratio is reduced)

→ a larger sensing area achieves less noise and better
performance with poor illumination

Some basic objectives of image processing

{(xi , yi)} is the set of pixels belonging
to the object of interest in the image

in robotics some useful basic
information are the center of mass and
the bounding box

center of mass

xm =

∑n
i=1 xi
n

ym =

∑n
i=1 yi
n

bounding box
lower-left = (min{xi},min{yi})
upper-right = (max{xi}max{yi})

Segmentation

Segmentation

• very common method to extract
features (objects or shapes)
from an image

• based on the identification of
regions having similar
characteristics (intensity, color,
etc.)

• distinct adjacent regions have significantly different
characteristics

• the result is a set of regions or contours

• heavy computation in case of several regions, so often is
implemented in hardware

• the efficiency can be improved in case additional information
about the features to extract are available

Thresholding

Thresholding

• the thresholding is a simplified type of segmentation

• it can be used in case of simple images, i.e., made by few
objects or colors

• in the simplest case, pixels are divided into foreground and
background

• the thresholding operation is done by applying the following
function:

input

output

threshold

0

255

0 255

RGB

RGB

the RGB coding represents a colored pixel using a triple of numbers
associated to the Red (R), Green (G) and Blue (B) components

the RGB is an additive coding that was born to display color
images on cathod tubes TVs

typical coded values are in the following ranges:

• range [0 . . . 1]

• range [0 . . . 100]

• range [0 . . . 255] (one byte per color)

• in hexadecimal representation [0x00 . . . 0xff], e.g. used in
HTML

The RGB space

YUV

YUV

it is a model based on luminance and chrominance

• Y (luma) defines the luminosity

• the U-V components contain the information on the color

it is possible to transform a RGB to a YUV representation using
the following transformation:YU

V

 =

 0.299 0.587 0.144
−0.14713 −0.28886 0.436

0.615 −0.51498 −0.10001

RG
B

YUV: the U-V plane

the plane is represented with Y = 0.5

A common low efficient approach to segmentation

2 threshold values for each pixel (6 thresholds in total):

if ((Y >= Y_LowerThresh) && (Y <= Y_UpperThresh) &&

(U >= U_LowerThresh) && (U <= U_UpperThresh) &&

(V >= V_LowerThresh) && (V <= V_UpperThresh))

pixel-color = color-class;

• the previous code fragment uses 6 comparisons instructions
per pixel

• to evaluate 32 distinct colors up to 192 operations are required

the execution can be very inefficient in modern
architectures with pipelines and speculative

execution

An efficient segmentation approach

• based on the quantization of the range of variation of colors

• let’s use a quantization made by 10 levels

e.g., the “orange” color can be described by the following arrays:

YClassOrange[] = {0,l,l,l,l,l,l,l,l,l};

UClassOrange[] = {1,1,1,0,0,0,0,0,0,0};

VClassOrange[] = {0,0,0,0,0,0,0,1,1,1};

An efficient segmentation approach

considering the previous arrays:

YClassOrange[] = {0,l,l,l,l,l,l,l,l,l};

UClassOrange[] = {1,1,1,0,0,0,0,0,0,0};

VClassOrange[] = {0,0,0,0,0,0,0,1,1,1};

to check whether the pixel identified by the color (1,0,9) is orange
it suffices to check the boolean value

isOrange = YClassOrange[1] & UClassOrange[0] & VClassOrange[9]

= 1 & 1 & 1 = 1

where isOrange is “1” if the pixel is classified as orange

NOTE: arrays are indexed in C notation; e.g., the *ClassOrange arrays are indexed from 0 to 9

Assigning one class over n

in general, to distinguish n different colors, a total amount of n
AND bit-wise operations and 3n arrays will be required

for example, the “green” color class is defined by

YClassGreen[] = {0,1,1,1,1,1,1,1,1,1};

UClassGreen[] = {1,1,1,0,0,0,0,0,0,0};

VClassGreen[] = {1,1,1,0,0,0,0,0,0,0};

so that to check the pixel having colors (1,0,9) the following test is
used:

isGreen = YClassGreen[1] & UClassGreen[0] & VClassGreen[9]

= 1 & 1 & 0 = 0

Parallelizing of the assignment

it is possible to pack several class codes into a single bit mask

YC1assOrange[] = {0 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 };

UClassOrange[] = {1 ,1 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 };

VClassOrange[] = {0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,1 ,1 };

YClassGreen[] = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1};

UClassGreen[] = { 1, 1, 1, 0, 0, 0, 0, 0, 0, 0};

VClassGreen[] = { 1, 1, 1, 0, 0, 0, 0, 0, 0, 0};

YClass[] = {00,11,11,11,11,11,11,11,11,11}

UClass[] = {11,11,11,00,00,00,00,00,00,00}

VClass[] = {01,01,01,00,00,00,00,10,10,10}

• most significant bit → orange

• least significant bit → green

Parallelizing of the assignment

to assign a color class to the (1,0,9) pixel the same bit-wise
operation is required:

ClassMask = YClass[1] & UClass[0] & VClass[9]

leading to

& 00 01 10 11

00 00 00 00 00
01 00 01 00 01
10 00 00 10 10
11 00 01 10 11

classMask is “10” if the pixel is orange, “01” if
green, and “00” if some other color

Parallelizing of the assignment

• up to 32 color classes can be packed within an array of 32-bit
integers

• the color class can be determined using two AND operations
only

YClass[] = {00,11,11,11,11,11,11,11,11,11}

UClass[] = {01,01,01,00,00,00,00,10,10,10}

VClass[] = {00,00,00,01,01,01,00,10,10,10}

the small size of the data structure allows very
efficient operations thanks to the use of cache

memory

Grouping of pixels

• once pixels are classified, they must be grouped

• adjacent pixels belong to the same object

horizontal lines of pixels can be encoded using the
Run Length Encoding method (RLE)

Run Length Encoding compression

• the compression takes place row-by-row

• horizontal sequences of pixels (runs) are identified

• the length of the each run is stored in each row

the RLE works well for long sequences of pixels
having the same color, otherwise the size of the

image may increase

Run Length Encoding compression

the above 3 rows are compressed as follows (by default, the coding
start with white pixels in each row)

5 3 4 2 1

3 6 2 4

0 5 1 2 4 2 1

Grouping of pixels

• the technique is suitable for robotics applications consisting of
images having few color variations

• the merging considers vertical adjacencies, since the horizontal
adjacency is done by the RLE compression

• runs are vertically grouped based on the 4-connectivity

• runs are grouped while object features (center of mass,
bounding box, etc.) are collected

Find-union and merging algorithm

1

2

4

6

5

3

• parsing the first row, the run 1 is classified as the root of a
tree

• the pointer of a root node points to itself

Find-union and merging algorithm

1

2

4

6

5

3

parsing the next rows:

• run 2 is linked to run 1

• run 3 is found to be another root

• run 4 is linked to run 2, and its pointer is linked to the root of
2, which is 1

• run 5 is directly linked to 3

Find-union and merging algorithm

1

2

4

6

5

3

• when run 6 is considered (from left to right), it is found to be
connected to run 4

• therefore, it is linked to the root of run 4, which is run 1

Find-union and merging algorithm

1

2

4

6

5

3

• afterwards, run 6 is found to be also connected to run 5

• since run 5 has a distinct root w.r.t. the root of 4, the pointer
of run 3 (root of run 5) is linked to the first found root (run 1)

in this way, different trees are merged

Find-union and merging algorithm

1: i = 0; k = 0

2: for each row i

3: for each run k

4: if i == 0 then

5: k is the root of a new tree

6: else

7: if k is linked to at least one run in row i-1

8: if k is linked to more than one run in row i-1

9: find the roots of the 2 runs

10: merge (union) of the two roots

11: if k is linked to more than 2 runs

12: go to line 9

13: else

14: the root of k is set equal to those of run in row i-1

15: else k is root of a new tree

16: save the information of the tree

17: k = k + 1

18: i = i + 1

Performance of the algorithm

• resolution : 640× 480

• frame rate : 30Hz

• processor : Intel Pentiun III (700 MHz)

• processor utilization : around 60%

