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Abstract—This paper presents a technique to predictably coor-
dinate the activation of Heating, Ventilation and Air Conditioning
systems (HVACs) in order to limit the overall peak load of power
consumption (peak shaving). The proposed solution represents a
viable approach to the Demand-Side Management in the context
of a smart grid for this type of loads. The coordination method
performs a load shifting based on the discipline of real-time
scheduling traditionally studied in the field of computing systems.
With this approach, individual constraints on the temperature
associated with the activation of each HVAC can be satisfied.
The main advantage of the proposed technique is its low
computational complexity, which allows to manage large sets of
loads. A specific approach is proposed and evaluated to deal with
large sets of loads by properly partitioning the load set into sub-
sets (scheduling groups) that are scheduled independently from
each other. Simulation results based on realistic parameters show
that the peak load can be reduced by 35% in normal working
conditions, and up to 60% with respect to worst case situations,
without affecting the comfort achieved by each HVAC.

Keywords- Real-time systems; Power system control; Scheduling;
Demand-Side Management; Load shifting.

I. INTRODUCTION

The Demand-Side Management (DSM) is one of the key

features enabled by the implementation of a smart power grid.

The DSM is commonly implemented to improve energy sys-

tem performance and reliability by limiting the peak load [1].

This paper proposes a technique to achieve predictable

Demand-Side Management actions targeted to the reduction

of the peak load of power consumption in a smart energy

environment. Our approach is based on load shifting to avoid

unnecessary simultaneous activations of a set of HVACs

to reduce the peak load that is caused by the absence of

coordination. A typical goal of a HVAC system is to keep

the room temperature within the desired range. Therefore,

heating or cooling is provided depending on the actual room

temperature, which is affected by the temperature of the

external environment. For a given external temperature the

activation pattern of a HVAC can be suitably approximated

by a periodic activity [2].

The modeling and control approach is derived from the

domain of Real-Time scheduling studied in computing sys-

tems [3]. The timing behavior of load activations is modeled

using parameters traditionally adopted by real-time processing

systems, such as periods and activation times. The distinguish-

ing features of our approach are: i) to provide guarantees in

worst case conditions; ii) to achieve the user constraints on

the temperature controlled by each HVAC; iii) to address the

scalability issue in order to deal with large sets of loads.

This paper addresses the load management in worst case

conditions. While it can be pessimistic in the average scenario,
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Fig. 1. Example of schedule of several HVACs. The time-scale is enlarged
from t = 20 to t = 25 to better depict the system evolution. In the top chart
shows the evolutions of temperatures normalized in their working ranges. The
second and third top charts show the consumed power by two independently
scheduled groups of HVACs. Active loads are indicated by their color. The
bottom chart shows the overall power demand.

it allows a predictable load balancing to limit the impact of

low-probability (but still possible) conditions which are behind

potentially catastrophic consequences such as power disruption

due to overloads [4]. The performance of real-time scheduling

applied to electric loads in average conditions is studied in [5],

where real-time load scheduling was compared with the case

of absence of load control.

The control action is based on the specification of the

requirements that need to be enforced on the temperature,

i.e., the desired working range for each HVAC. The control

policy will meet such requirements, while limiting the peak

load. To model and meet the requirements on the desired

working conditions, an approach based on the existing real-

time scheduling theory has been used, namely Real-Time

Physical Systems (RTPS) [6]. RTPSs are a special case of

switching hybrid system where the switching signal corre-

sponds to a real-time schedule. A physical variable (the con-

trolled temperature, in our case) changes its value according

to the activation the HVAC, and such activations are driven

by a real-time scheduler. In practice, the dynamics of the

physical process changes when its state is switched due to

scheduling decisions. Moreover, the activity of a load may be

interrupted and resumed later to account for higher priority

loads. The priority of a load is automatically determined by

the scheduling algorithm on the basis of the timing constraints.

The focus of the proposed approach is on the scalability to

large systems. For this purpose, the discussed method has low



computational complexity, making it applicable to large sets of

loads. The idea is to organize the loads into distinct groups that

are scheduled independently from each others. This commonly

adopted approach is known in the field multiprocessor real-

time computing systems as partitioned scheduling. Despite it

may produce a sub-optimal solution, the partitioned scheduling

reduces the complexity to a linear or polynomial problem, and

it allows the use of simpler scheduling algorithms having a

number of known useful properties.

Fig. 1 shows an example of system behavior where different

on/off HVACs are partitioned into two independent groups and

scheduled to limit the overall peak load. The figure also shows

the behavior of the temperature associated with each load,

which depends on the activation state of the load.

The reminder of the paper is organized as follow. In

Section II is presented a brief analysis of the state of the art in

DSM literature. Section III describes the system model in both

dynamics and timing terms. Section IV states the properties of

the system and shows how is possible to get adequate timing

parameters for the switching signal. Section V tackles the

problem of the large set of loads: a partitioning method is

proposed to achieve both good results in peak load reduction

and small complexity in algorithms that allows the method

to scale well with the number of loads. Section VI quantifies

the performances of the proposed approach with simulated

examples. Final remarks are in Section VII.

II. RELATED WORKS

The literature on power systems addressing DSM ap-

proaches is wide. A recent overview and categorization of

DSM approaches is available in [1]. Some works focuses on

the modeling aspects, without proposing a control method

based on those models [7]. Optimization methods are often

leveraged to minimize the peak load. However, the adopted

solutions are based on off-line algorithms that can not cope

with the dynamic and heterogeneous nature of large sys-

tems [8], [9]. Approaches based on artificial intelligence are

also available, such as [10], where fuzzy logic is used to

control a set of thermal loads. However, the properties of these

methods (and predictability in particular) are not formally

proved. In [11] the authors present a priority-based approach to

the load management. It clearly shows different types of loads

and their working constraints. The weak point of the approach

is the manual assignment of priorities. Our approach, instead,

while being inherently based on the assignment of priorities,

provides an automatic assignment of priorities on the basis of

timing parameters. In fact, the scheduler dynamically activates

the load having the highest priority. This is a distinguishing

feature of real-time scheduling methods.

RTPSs have been firstly presented in [6], dealing with

affine dynamic systems. In [6] a partitioning-based method to

manage large load sets is mentioned as a possibility and not

explicitly integrated in the model. Before the formalization of

RTPSs, the use of real-time scheduling for the management of

electric loads was proposed in [12] and [13]. In [12] the focus

is on the optimal partitioning of loads to manage large sets

of loads. However, no physical variables are associated with

the loads. In [13] such association is addressed, but the issue

of large systems is not considered. Moreover, in [13] state

variables are characterized by integrator dynamics, while affine

dynamics are considered in this paper. The application of real-

time techniques to the load scheduling is investigated in [14]

considering constraints on state variable variations and model-

ing errors. Errors are characterized by a statistical distribution,

and they are compensated using a feedback technique based on

the measurement of the state variable value in correspondence

to request times.

III. SYSTEM MODEL

This section describes the system model, including the

adopted model for HVACs and its modeling terms of real-time

parameters.

A. Physical system

The power system considered in this paper is modeled as

a set of n electric on/off HVACs. HVACs are independent

from each others. A simple but accurate model for a HVAC

system is proposed in [9], and it is recalled in the following.

The adopted model describes a first order dynamic system,

which has been proven to capture the behavior of HVAC loads

accurately.

dX(t)

dt
=

Xo(t)−X(t)−Xgs(t)

τ
(1)

In (1), X(t) is the internal air temperature of the room,

Xo(t) is the outside air temperature, Xg is the temperature

gain of the air-conditioner, τ is the actual time constant of the

room expressed in minutes, and s(t) : R → B is the current

state of activation of the load: s(t) = 0 if the load is not

active at time t and s(t) = 1 otherwise. The above model

characterizes the behavior of a single HVAC. The controller

must guarantee that the inside room temperature lays within

a comfort range:

X(t) ∈
[

Xmin, Xmax
]

, ∀t (2)

In [15] this type of loads is called controllable load,

since it can be shed to achieve the peak load reduction.

Preferably, in this specific case a feedback control scheme

should be integrated to regulate the temperature upon external

temperature variations. A suitable method for this control is

proposed in [16].

B. Real-time modeling of the switching signal

Load activations are driven by a switching signal. Such a

signal is generated by a centralized controller, called sched-

uler. Considering the entire system, the schedule is defined as

the function s : R+ → B
n = [s1 . . . sn]. The distinguishing

point of the proposed approach is that the switching signal

is generated by a real-time scheduling algorithm, such as the

Earliest Deadline First algorithm (EDF) [3].

The total power demand in any given time instant t is

the sum of the power consumed by all active loads at time

t. On the other hand, the scheduling action performed by



the scheduler produces the effect to reduce the unnecessary

simultaneous activations of loads. As a result, the scheduling

action is able to limit the peak load by avoiding unnecessary

simultaneous activations.

Considering the above observations, the modeling and con-

trol problem translates to the assignment of proper values to

timing parameters and constraints associated with the HVACs.

For this purpose, a set of real-time parameters are associated

to each HVAC. The adopted model derives from the periodic

task model studied in real-time computing systems [17]. The

generic i-th load is associated with the tuple λi
.
= (Ti, Ci, Pi),

where:

• Ti ∈ R
+: it is the minimum time interval between two

consecutive request times, or period; a request time ri,k
is defined as the k-th request for activating the load; it

holds ri,k+1 − ri,k = Ti, k ∈ N;

• Ci ∈ R
+ : Ci ≤ Ti represents the required duration of

the load activation time within each period Ti;

• Pi ∈ R
+ is the nominal power of the i-th load.

Real-time parameters are used by the scheduling algorithm to

generate the switching signal, i.e., the schedule. The values of

timing parameters will be bounded to enable the schedulability

analysis in the worst case. For this purpose, the following

definition is introduced:

Definition 1 (Valid schedule). A schedule s is said to be valid

if it assigns to each load an amount of activity time equal to

Ci within each time interval [ri,k, ri,k+1]. Formally, it holds:

∀i, ∀k

ˆ ri,k+1

ri,k

si(t) dt = Ci (3)

Note that the definition of valid schedule is slightly different

from the one applicable to traditional real-time systems. In

particular, in traditional real-time systems a less-then-equal re-

lation is allowed, since Ci refers to the Worst-Case Execution

Time (WCET). The WCET is the longest possible execution

time of a real-time computing task. The WCET is used to

perform the schedulability analysis in the worst case, while

during the system behavior the actual duration of a task can be

less than WCET. An equality is instead formulated in (3). This

is required to achieve the requirements on the state variable

variation.

To derive the results in following sections, two common

figures used in real-time systems are introduced: the load uti-

lization Ui
.
= Ci/Ti and the total utilization U tot .

=
∑n

i=1 Ui.

While Ui ≤ 1 is the fraction of time in which the i-th load

is active, U tot represents the total fraction of activity time of

the whole load set. The total utilization U tot is particularly

useful. In fact, it is used to perform a test (the so-called

schedulability test) to determine whether a given scheduling

algorithm can successfully schedule the load set [3]. Under

proper assumptions, a scheduling algorithm A is able to

schedule a load set if U tot ≤ U lub(A), where U lub(A) is

the least upper bound on the total utilization that guarantees

the schedulability when using the A scheduling algorithm.

C. The feasibility problem

As from previous definitions, the considered system model

is composed by a dynamic system, the desired working range,

the real-time parameters and a scheduling algorithm. While the

dynamic system and the working range are related with the

underlying physical process, i.e., the controlled HVAC, real-

time parameters and the scheduling algorithm can be selected

by the system designer. The selection should be made in

order to obtain a feasible RTPS, according with the following

definition:

Definition 2 (Feasibility). Given the timing parameters de-

scribing the load set, a RTPS is said to be feasible if and only

if user requirements are satisfied by every valid schedule.

Equation (3) characterizes a class of switching signals

within the set of all possible scheduling patterns. The RTPS

feasibility problem concerns the identification of the class

of valid switching signals such that the requirements on the

controlled temperature are guaranteed. This problem translates

to the identification of suitable values for Ci and Ti to drive

the evolution of physical variables in compliance with user

requirements.

The analysis is based on the observation that the scheduler

generates a valid switching signal among all the possible valid

signals. Therefore, the analysis is performed considering the

worst case signal, i.e., the signal that brings to the worst

possible situation in terms of user requirements violation. This

allows to assess the behavior of all other “less critical” valid

switching signals.

D. Peak load minimization

The application of RTPSs proposed in this paper is to limit

the peak load of power demanded from a set of HVACs,

while meeting requirements on the controlled temperature. The

activity of an HVAC is controlled by the scheduler, which

generates the schedule si for the i-th load. The i-th HVAC

consumes either an amount of electric power Pi ∈ R
+ when

active, no power otherwise. Hence, the power consumption

over time can be modeled with the function p : R+ → R
+

defined in (4).

pi(t) = Pisi(t) (4)

Transient phases between active and inactive states are not

considered in this paper.

The overall instantaneous electric power absorbed at time t
is the sum of the power consumed by all the HVACs, as stated

in (5).

w(t) =

n
∑

i=1

pi(t). (5)

The peak load is the maximum value taken by w(t) during

the considered timespan.

The peak load minimization can be optimally achieved by

a RTPS scheduler when a uni-processor scheduling algorithm,

such as EDF, is able to schedule the load set. In this case, the

algorithm achieves that only one load is active at any given

time, and the peak load is equal to the nominal power of the

most power-consuming load. The schedulability test can be



used to determine whether there exists a feasible schedule,

provided that user requirements are also met.

On the other hand, if simultaneous activations can not be

avoided, i.e. when a uni-processor scheduling algorithm is not

able to schedule the load set, then the minimization of the peak

load becomes more complex. In this case, a RTPS scheduler

generates a schedule that approximates the optimal solution.

Therefore, the RTPS method represents an efficient heuristic

to this problem. In fact, a scheduling algorithm as EDF has

complexity O(n logn) required to sort a queue upon a load

activation request.

IV. FROM PHYSICAL TO TIMING PARAMETERS

In [6] it is shown by a worst-case analysis how to derive

the required timing parameters, namely the period T and the

utilization U , from a first order model of a load like the one

expressed by (1)-(2). The external temperature is represented

by a constant function Xo(t) = Xo. Basically, there exists a

set of pair (U, T ) for which the temperature is always kept

within the comfort range for any possible activation pattern

generated by the real-time scheduler using a given value for

the (U, T ) parameters. In particular, it is shown that U must

be chosen within the range
[

Umin, Umax
]

, where:

Umin = max

{

0,
Xg +Xmin −Xo

Xg

}

Umax = min

{

Xg +Xmax −Xo

Xg
, 1

} (6)

It is easy to show that a valid choice is U = Umin+Umax

2 .

Once the utilization U has be determined, the period T must

be chosen such that both inequalities (7) hold. Following this

procedure, it is possible to assign timing parameters to the

electric load such that the temperature is always kept within

the comfort range. In (7), U = 1− U .

Xo −Xmin >
2Xoe

UT/τ −Xge
2UT/τ +Xge

T (1+U)/τ

1− eT/τ

Xg −Xo +Xmax >
2Xoe

UT/τ −Xge
2UT/τ +Xge

T (2−U)/τ

1− eT/τ

(7)

The set of possible solutions for both (6) and (7) determines

the region Ω of pairs in the U − T space, called feasibility

region. An example of feasibility region is depicted in Fig. 2.

As it will be clearer from Section V, the choice of a low

value for U helps to obtain a lower peak load. However,

lower U brings to lower T , thus generating a higher switching

frequency. This is often not tolerable in practical applications

such as processes driven by electric motors. Therefore, the

selection of U represents a trade-off between peak load and

system lifetime.

V. LOAD PARTITIONING

This paper proposes the use of classic real-time scheduling

algorithms to manage the set of electric loads, such as Rate

Monotonic (RM) or Earliest Deadline First (EDF) [17]. The

scheduling algorithm requires the specification of Ti and Ci

for every load λi to build a schedule. Well known real-time
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Fig. 2. Example of feasibility region in the U − T space. By scheduling a
load with timing parameters in the feasibility region, the achievement of user
requirements is guaranteed (see Definition 2).

scheduling algorithms such as RM and EDF can generate a

schedule where only one single load is active at any given

time. However, this is possible only when the total utilization

U tot is less or equal of an upper bound U lub(A) whose

value depends on the considered algorithm A. For example,

U lub(EDF ) = 1. Therefore, when U tot ≤ 1, preemptive

EDF can build a schedule S without activating more than

one load at any given time. As a consequence, the peak load

P ∗ = maxi Pi is minimized.

On the other hand, if U tot > U lub then the simultaneous

activation of two or more loads can not be avoided, leading to

a possibly larger peak power consumption P > P ∗. The pro-

posed solution is to partition the whole load set into m disjoint

sets Λj , j = 1, . . . ,m, called scheduling groups. Scheduling

groups are determined such that their total utilization, defined

as

UΛj
=

∑

λi∈Λj

Ui, (8)

is smaller than or equal to U lub(A). This property enables an

uni-processor scheduling algorithm A to find a valid schedule

independently for each scheduling group.

Since there is no relationship between the schedule gen-

erated within any pair of scheduling group, the maximum

overall peak load will happen when the loads with the highest

power are simultaneously activated in every scheduling group.

Therefore, an upper bound P ub on the peak load can be found

considering the simultaneous activation within every group of

the load with the highest power Pi, i.e.:

P ub =
∑

Λj

max
λi∈Λj

Pi. (9)

A. Level packing

The problem of partitioning the set of loads can be for-

malized as a level packing problem [18]. Level packing is a

special case of the generic two-dimensional packing problem.

In level packing, one or more strips are filled to accommodate

a set of rectangles such that the total height is minimized. The

peculiarity of level packing is that rectangles are partitioned in

horizontal strips or levels. The complexity of the level packing

problem is NP-hard; in fact, it can be easily reduced to a

classical one-dimensional packing problem having NP-hard

complexity. Approximation methods have been proposed to

face the complexity issue [19]. The approximation methods
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Fig. 3. Example of level packing using the FFDH algorithm. Five items
are firstly ordered by non-increasing height and then packed into two levels.
Note that item 3 generates a new level Λ2 since it does not fit at the right of
item 2 within level Λ1. The load utilizations of the 5 loads are respectively
(0.28, 0.26, 0.49, 0.22, 0.30). Their consumed power are (5, 4, 3, 2, 1). The
schedule generated by this system is depicted in Fig. 1.

are built by ordering the rectangles by non-increasing heights.

Rectangles are grouped to fill the strips using different strate-

gies. In each level, items are packed from left to right by

non-increasing height, similarly to the arrangement of books

within a bookshelf (see Fig. 3). The First-Fit Decreasing

Height scheme (FFDH) is conceived such that it inserts the

next item X (in non-increasing height ordering) on the first

level where X fits. If no level can accommodate X, a new level

is created. After the packing action, the height of a level is

equal to the height of the leftmost item. The interesting aspect

of FFDH is that the time complexity is O(n log n). Moreover,

its approximation ratio has been formally derived. In particular,

it holds FFDH(I) ≤ (17/10) ·OPT(I)+1, where I is a set of

items to be packed, FFDH(I) is the height obtained by FFDH,

and OPT(I) is the height produced by the optimal algorithm.

The asymptotic bound of 1.7 is proved to be tight.

B. Application to the scheduling problem

The application of the level packing to the scheduling

of electric loads requires the proper modeling of the loads.

Therefore, each load λi is represented as a rectangle having

height equal to the power consumption Pi and width equal

to its utilization Ui, being Ui ≤ 1. The packing happens in a

two-dimensional space where the utilization appears on the x
axis, while the consumed power is on the y axis. The width

of the packing space corresponds to the least upper bound on

the utilization of the considered scheduling algorithm (e.g.,

U lub = 1 for EDF). The goal to limit the total height of

packed rectangles clearly corresponds to the goal of limiting

the peak load of power consumption of the whole power

system. On the other hand, fitting the items on the x axis

in each level corresponds to group a set of loads whose total

utilization is less than or equal to U lub, thus composing a set of

loads that is successfully schedulable by the considered real-

time scheduling algorithm. Once all loads have been grouped

into scheduling groups using the level packing, each group

of loads is scheduled independently from other groups. The

schedulability is guaranteed since the utilization UΛj
of the
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Fig. 4. Distribution of timing parameters values obtained from physical
parameters in the 100-loads Monte Carlo simulation.

group Λj is less than or equal to the upper bound U lub that

achieves the schedulability of the load set. Fig. 1 shows an

example of schedule of loads whose relevant parameters are

listed in Fig. 3. The grouping of loads is as in Fig. 3.

The proposed technique recalls the Rate Monotonic First-Fit

Decreasing Utilization (RM-FFDU) partitioning scheme for

scheduling fixed priority real-time tasks on a multi-processor

system [20], where bin-packing techniques are used to allo-

cate tasks to processors. However, [20] does not address the

optimization of the total power consumption. Moreover, the

key distinction is that in this paper the ordering is made with

respect to the value of load’s consumed power, and utilization

is not considered for this purpose.

VI. PERFORMANCE EVALUATION

This section assesses the performance of the proposed ap-

proach by means of simulation and using realistic parameters.

Similarly to [9], from the viewpoint of generating different

realistic operating scenarios, Monte Carlo simulations are

applied in this paper. By assuming uncertainties on differ-

ent variables (τ,X,Xo, Xg) that closely resemble real-life

operating conditions, Monte Carlo simulations are performed

through repeated sampling of uncertain variables.

Each simulation run has been initialized with pre-specified

stochastic parameters, chosen with the following method:

number of air conditioner – 100; internal temperature distri-

bution – Normal distribution with mean 72 F and standard de-

viation 12 F, i.e. X(0) ∈ N(74, 12) [F]; air-conditioner model

parameters – τ ∈ N(64, 5) [min], Xg ∈ N(30, 10) [F]; outside

air temperature – uniform distribution between 75 F and 90 F

Xo ∈ [75, 90] [F]; desired temperature range – Xmin = 70 [F],

Xmax = 76 [F]. In terms of power request, 5 air-conditioner

sizes are considered – P ∈ {1.2, 2.5, 3.0, 4.5, 6.0} [kW].

Given the load set, the timing parameters (U, T, C) are

calculated for each load as illustrated in previous sections of

this paper. In particular, it is set U = Umax+Umin

2 . Then, T is

set as the maximum value within the set of feasible values

(Definition 2). Fig. 4 shows the resulting histograms of timing

parameters. Utilizations range from 0, i.e. always off, to 1, i.e.

always on. Periods are in the range [10, 60] minutes.

In order to evaluate the performance of the proposed ap-

proach, the RTPS control method is compared with the tra-

ditional hysteresis control. In the hysteresis-control approach,

each air-conditioner is turned on when the room inside air

temperature reaches the upper thermostat set-point Xmax and

turned off whenever this temperature falls below the lower

thermostat set-point Xmin.
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the peak load of the 35% in respect of hysteresis control in regular working
conditions. The improvement on the theoretical bound associated with worst
case working conditions is around 60%.

Fig. 5 shows the peak load as a function of the total number

of loads in the system under different control strategies. With

the hysteresis-based control, the worst case bound is equal

to the sum of all loads power, while in the RTPS-controlled

system the theoretical bound is obtained by summing the

power consumed by the most power-consuming loads in

each scheduling group generated by the packing algorithm.

It is worth to note that, while the theoretical bound for the

hysteresis-controlled method may represent a very unlikely

worst-case condition, it is still a possible situation, whose

likelihood increases with the system lifetime. For both control

methods, the figure also shows the actual peak load recorded

by simulating the system behavior over a 120 hours (5 days)

time span. The actual (recorded) peak load generated by the

RTPS-based control is able to reduce the peak load in average

by 35% with respect to the actual (recorded) peak load in

absence of coordination, which represents a normal working

condition. On the other hand, the peak load is reduced by up

to 60% with respect to the worst possible case (theoretical

bound) of the hysteresis-controlled case. Finally, it is worth

to note that the recorded peak load of the RTPS-controlled

system is very close to its theoretical bound This means that

the worst situation in the partitioned scheme (i.e., when the

most power-consuming loads in every scheduling group are

simultaneously activated) do happen almost always.

VII. CONCLUSION

This paper presented an approach to coordinate the acti-

vation of a large sets of HVACs in a Demand-Side Manage-

ment scenario. The proposed method is based on scheduling

techniques adapted from the domain of real-time scheduling.

The combination of a level packing strategy and uni-processor

scheduling algorithms allows to meet both timing and physical

constraints. Simulation results based on realistic parameters

prove a relevant improvement of peak load reduction.
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