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Abstract

This paper addresses the application of real-time

scheduling for the reduction of the peak load of power

consumption generated by electric loads in a power sys-

tem. The considered physical processes are characterized

by integrator dynamics and modeled as sporadic real-time

activities. To enable the applicability in realistic scenar-

ios, modeling approximations and uncertainties on phys-

ical parameters are explicitly included in the model. A

feedback control strategy is proposed to guarantee the re-

quirements on physical values under control in presence

of modeling and measurement uncertainties. To compen-

sate such uncertainties, the value of timing parameters

used by the scheduler are dynamically adapted. Formal

results have been derived to put into relationship the val-

ues of quantities describing the physical process with real-

time parameters used to model and to schedule the acti-

vation of loads.

1 Introduction

Peak load reduction is fundamental for the correct and

efficient operation of power systems [4, 9]. Peak load

conditions, i.e., arising from usage of a large amount of

electric power by many simultaneously activated loads,

may cause severe problems such as the disruption of

power provision, leading to technical and economic is-

sues for both energy providers and customers. There is

an extended literature on power systems dealing with re-

lated topics as peak shaving, load balancing, Demand-

Side Management, and Direct Load Control. Possible ap-

proaches include control systems and optimization tech-

niques, artificial intelligence (fuzzy logic, neural net-

works, expert systems, etc.), and methods facing eco-

nomic/regulatory issues. An up-to-date overview and

classification of available techniques can be found in [12].

Recently, methods based on real-time scheduling have

been proposed to manage a sset of loads in a power sys-

tem [8]. Later, Real-Time Physical Systems (RTPSs) have

been introduced as a paradigm to model and control a

physical process where the variation of physical variables

is associated with a real-time schedule [5, 7]. The primary

application of RTPSs is the management of electric loads

in power systems to achieve the reduction of the peak

load. In RTPSs, the value of physical variables change

according to the state of activation (on/off) of the real-

time schedule. Such value is required to remain bounded

within a specified working range. The management of

concurrency featured by real-time scheduling algorithms

is leveraged to optimize the peak load of electric power

consumption in a energy/power system subject to physical

constraints. The idea is to timely and predictably sched-

ule the activation of power-consuming devices in order to

limit unnecessary simultaneous activations, thus reducing

the peak load. The physical system is modeled using tim-

ing parameters typically used in real-time systems. Real-

time parameters must be properly set such that every state

variable is bounded within the desired working range. It

is worth to outline that RTPSs do not deal with real-time

processing tasks whose computation triggers the activa-

tion/deactivation of a power load. Instead, the activation

of power loads is the actual entity which is directly asso-

ciated with scheduling events (activations/deactivations)

generated by a real-time scheduling algorithm.

This paper proposes a dedicated feedback control

scheme to deal with modeling errors and uncertainties in

a RTPS. This is particularly relevant in practical applica-

tions, where values of modeling parameters are always af-

fected by some source of uncertainty. The derived results

extend the ones carried out in [8], where a similar sys-

tem model and control techniques have been developed,

but without accounting for modeling errors. The method

was essentially an open-loop control strategy, since no

information was acquired and used at run-time to adjust

possible mismatches between expected and actual system

trends. In particular, without an adequate compensation,

the correct system behavior could have been jeopardized

by the effect of unmodeled errors, as shown in this pa-

per. In this work, errors are explicitly introduced and

properly modeled. On the basis of this modeling effort,

a feedback scheduling rule is proposed to dynamically

compensate the effect of uncertainties. The result is the

achievement of requirements on working ranges imposed

on physical variables. The provided analysis allows to de-

termine the relationship between physical parameters and

timing parameters. Therefore, the derived results translate
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the requirements on the physical variables into timing con-

straints used to schedule the activation of electric loads.

In [7] RTPSs have been developed considering constraints

on state variable variations and modeling errors. How-

ever, uncertainties have been specified in terms of statisti-

cal distributions (soft physical requirements), while worst-

case scenarios are considered in this paper (hard physical

requirements), leading to a completely different analysis

approach.

2 Real-Time Physical Systems model

In general terms, a RTPS is made by a set of elements,

where each element is composed by two interacting as-

pects: a physical subsystem, characterized by a contin-

uous timing, and a controller, which has a discrete be-

havior. A state variable is associated with the physical

subsystem, while the controller models and regulates the

physical process by generating a schedule that determines

the actual behavior of the state variable. The schedule is

built using a real-time scheduling algorithm. For example,

Figure 1 shows two components whose state variables x
have integrator dynamics (i.e., ramps in the time domain).

The physical subsystems represented in Figure 1 may be

two refrigerators. The physical quantity of interest is the

internal temperature, which decreases when the refrigera-

tor is active, while it increases otherwise. By definition,

a controller is said to be active when it is scheduled for

execution/running; otherwise it is not active. It is worth

to note that, clearly, considering integrator dynamics for a

refrigerators (as well as for other types of loads that usu-

ally have linear dynamics, i.e., exponential behavior in the

time domain) represents a modeling approximation. How-

ever, it can be realistically afforded in many practical sit-

uations (e.g., [10, 3]).

In RTPS the state variable behavior is only affected by

the state of activation of the corresponding load. There-

fore, the state of activation of a load is related with typical

scheduling events of a real-time schedule, such as activa-

tions, terminations, and preemptions. The key observation

is that the behavior of a state variable does not depend on

the computation outcome of a real-time processing task,

as it happens in traditional control systems implemented

on top of a Real-Time Operating System. In fact, in real-

time control tasks, the control action imposed on a phys-

ical devices mainly derives from numerical results pro-

duced by the control algorithm implemented by the task.

In a RTPS the control action is implicitly determined by

the state of activation of the controller, i.e., it directly de-

pends on the schedule generated by the controller. As a re-

sult, the control problem of the physical process requires

to be studied in conjunction with the real-time scheduling

problem. In particular, the scheduling of controllers af-

fects the dynamics behavior of the physical process and

related state variables. On the other hand, constraints on

the physical process determine the selection of timing pa-

rameters at design time, while the value of state variables
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Figure 1. Example of RTPS made by two
components. The behavior of state vari-

ables xi are determined by the schedule si.
The total power demand w(t) is the sum of
power consumed by the two devices.

can drive scheduling decisions at run-time.

2.1 System dynamics

The system considered in this paper is composed by

n electric on/off loads. Each load acts on one subsystem,

whose dynamic behavior is described by a time-dependent

controlled switched hybrid system [11] with integrator dy-

namics. Subsystems are independent from each others,

and each load operates on one physical subsystem only.

The dynamics of the i-th subsystem is described by (1).











dxi(t)

dt
= f

si(t)
i =

{

−αon
i if si(t) = 1

+αoff
i if si(t) = 0

xi(0) = x̄i

(1)

The quantities involved in (1) are:

• t ∈ R
+ is the continuous time span;

• xi(t) ∈ R is the state variable of the subsystem and

represents the physical quantity of interest;

• x̄i is the initial value of the state variable;

• si(t) ∈ B ≡ {0, 1} is the operation mode of the

subsystem. It represents the activation status of the

i-th load: si(t) = 0 if the load is not active at time t,
and conversely, si(t) = 1 when the load is active;

• f
si(t)
i ∈ R is the integrator dynamics’ parameter of

the subsystem i-th at time t; its value can be either

αon
i ∈ R or αoff

i ∈ R depending on the value of

si(t).

Considering the whole system, s : R
+ → B

n =
[s1 . . . sn] is called switching signal or schedule. The pre-

vious model describes a system where the evolution over



time of the state variables depends on the activation status

of the loads. Loads’ status is driven by the switching sig-

nal. This signal is generated by a centralized controller,

called scheduler.

2.2 Switching signal

The distinguishing point of a RTPS is that the switch-

ing signal is generated by a real-time scheduling algo-

rithm, such as the Earliest Deadline First algorithm (EDF).

The result is an effective control strategy to reduce the un-

necessary simultaneous activations of loads. In fact, at

any given instant, the scheduler will automatically limit

the activation to those loads that are required to avoid the

violation of timing constraints. Since the peak load of

power consumption in a given t time instant is the sum

of the power consumed by all loads simultaneously active

at time t, by reducing number of simultaneous activations

the RTPS approach results an efficient method to obtain

the reduction of the peak load.

Considering above observations, the modeling and

control problem translates to the assignment of proper val-

ues to timing parameters and constraints associated with

each load. For this purpose, a set of real-time parameters

are associated to each electric load. The adopted model

derives from the sporadic task model [1]. The generic i-th
load is associated with the tuple (Ti, Di, Ci). The mean-

ing of such parameters is the following:

• Ti ∈ R
+: it is the minimum time frame between two

consecutive request times, or period; a request time

ri,k is defined as the k-th request for activating the

load; it holds ri,k+1 − ri,k ≥ Ti, k ∈ N;

• Di ∈ R
+ : Di ≤ Ti is the relative deadline; it

defines the time frame [ri,k, ri,k + Di], for k ∈ N,

in which a load must perform its activity within each

period;

• Ci ∈ R
+ : Ci ≤ Di represents the activation time

duration of a load within each period Ti;

Previous real-time parameters are used by the scheduling

algorithm to generate the switching signal, i.e., the sched-

ule. The scheduling algorithm is said to be closed-loop if

it considers the actual value of the state variables x(t) to

generate the schedule; it is said open-loop otherwise. In

case of a closed-loop algorithm, which is the one consid-

ered in this paper, the scheduler sets proper values of real-

time parameters at each request time. This is required to

compensate possible uncertainties on physical modeling

parameters. Based on the measurement of the state vari-

able at the generic k-th request time xi(ri,k), the sched-

uler computes the values of Ti,k, Di,k and Ci,k to be used

in the next period. The scheduler also sets the next request

time to ri,k+1 = ri,k + Ti,k. The values of timing param-

eters will be properly bounded in order to allow the use of

bounds to perform the schedulability analysis in the worst

case. Results derived in this paper are oriented to deter-

mine the values of such bounds.

In the prospective of using a closed-loop scheduling

approach, a valid schedule is defined as follows.

Definition 1 (Valid schedule). A schedule s is said to be

valid if it assigns to each load an amount of activity time

equal to Ci,k ≤ Ci within each time interval [ri,k, ri,k +
Di,k], having Ci,k ≤ Di,k ≤ Ti,k . Formally, it holds:

∀i, ∀k

∫ ri,k+Di,k

ri,k

si(t) dt = Ci,k (2)

Note that the definition of valid schedule is slightly dif-

ferent from the one applicable to traditional real-time sys-

tems. In particular, (2) is an equality instead of a less-

then-equal relation.

2.3 User requirements

User requirements are a set of constraints on the physi-

cal quantities of interest. They capture the desired behav-

ior of the physical process. User requirements considered

in this paper are stated such as the physical quantity of in-

terest of each subsystem requires to be bounded within a

given working range:

xi(t) ∈ Ψi ≡
[

xmin
i , xmax

i

]

(3)

An example of this kind of requirements is the internal

temperature of a refrigerator, which needs to be main-

tained within the desired range.

2.4 The RTPS feasibility problem

As from previous definitions, a RTPS is composed by

a dynamic system, user requirements, real-time parame-

ters and a scheduling algorithm. While the dynamic sys-

tem and user requirements are related with the underlying

physical process, real-time parameters and the scheduling

algorithm can be selected by the system designer. The se-

lection should be made in order to obtain a feasible RTPS,

according with the following definition of feasible RTPS.

Definition 2 (Feasibility). A RTPS is said to be feasible

if and only if user requirements can be satisfied by a valid

schedule.

Equation (2) identifies a class of switching signals

within the set of all possible scheduling patterns. The

RTPS feasibility problem concerns the identification of

the class of valid switching signals such that user require-

ments are guaranteed. This problem translates to the iden-

tification of suitable values for Ci, Di and Ti to drive the

evolution of physical variables in compliance with user

requirements.

The analysis approach is based on the observation that

the scheduler generates a valid switching signal among all

the possible valid signals. Therefore, the analysis is per-

formed considering the worst case signal, i.e., the signal

that brings to the worst possible situation in terms of user

requirements violation. This allows to assess the behavior

of all other “less critical” valid switching signals.



Definition 2 refers to hard user requirements. Hard

user requirements are those that can be never violated.

In [7], instead, authors have addressed soft user require-

ments, which are those that can be occasionally infringed.

2.5 Peak load limitation

The application of RTPSs proposed in this paper is to

limit the peak load of power consumption generated by a

set of electric loads, while meeting requirements on phys-

ical values. Each electric device can be either active or

not. The activity of loads is controlled by the scheduler

that generates the si schedule for the i-th load. The i-
th device consumes either a Pi ∈ R

+ amount of elec-

tric power when active, no power otherwise. Hence, the

power consumption over time is modeled with the func-

tion p : R+ → R
+ defined in (4).

pi(t) = Pisi(t) (4)

This paper does not consider transient phases between ac-

tive and inactive states.

The overall instantaneous electric power absorbed at

time t is the sum of the power consumed by every subsys-

tems, as stated in (5).

w(t) =
n
∑

i=1

pi(t). (5)

The maximum value of w(t) is the peak load, and the goal

of the proposed approach is to reduce it. The peak load

minimization problem can be formally defined as follows.

Definition 3 (Peak load minimization problem). The peak

load minimization problem consists in finding the optimal

schedule s∗ : R+ → B
n, which minimizes the peak load

and satisfies user requirements.

s∗ = argmin
s

max
t≥0

n
∑

i=1

Pisi(t) (6a)

subj. to ẋi(t) = f
s(t)
i , ∀i (6b)

xi(t) ∈ Ψi, ∀i (6c)

A RTPS scheduler generates the optimal schedule s∗

when a uniprocessor scheduling algorithm, such as EDF,

is able to schedule the load set. In this case, the algorithm

achieves that only one load is active at any given time,

and the peak load is equal to the power consumed by the

most power-consuming load. The schedulability test can

be used to determine whether there exists a feasible sched-

ule, provided that user requirements are also met.

On the other hand, if simultaneous activations can not

be avoided, i.e. when a uniprocessor scheduling algo-

rithm is not able to schedule the load set, then the min-

imization of the peak load becomes more complex. In this

case, a RTPS scheduler generates a schedule that approx-

imates the optimal solution. Therefore, the RTPS method
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Figure 2. Comparison of the total power

consumption of 100 randomly generated

loads controlled by an hysteresis controller,
and a RTPS controller.

represents an efficient heuristic to this problem. For ex-

ample, in [6] an heuristics based on bi-dimensional bin-

packing has been investigated to divide the load set in sub-

sets such that each subset can be scheduled independently

by an uniprocessor scheduling algorithm. This method re-

sembles the partitioned scheduling approach proposed for

multiprocessor real-time systems. In this case the peak

load is bounded by the sum of powers of the most power-

consuming load in each subset.

Figure 2 shows a simulation example of the total power

demand of a set of 100 loads, which have been scheduled

by a traditional hysteresis controller in comparison to the

proposed RTPS approach. In this case, the peak load is re-

duced by the 31% and the standard deviation of the power

demand is reduced by the 61%. The overall power con-

sumption remains close to the average value, as desired.

3 Properties and results

In this section, interesting properties regarding the re-

lationship between real-time and physical parameters are

derived. Since physical subsystems are independent from

each others, the analysis will deal with one subsystem

only. To derive the results in following sections, two

common figures used in real-time systems are introduced:

the load utilization Ui
.
= Ci/Ti and the total utilization

U tot .
=

∑n

i=1 Ui. The former is the fraction of time in

which the i-th load is active, while the latter is the total

fraction of activity time of the whole load set.

This section firstly re-calls some results originally pre-

sented and proved in [8] regarding RTPS with integrator

dynamics in absence of modeling errors, that will be ex-

tended to include modeling errors in next sections.

3.1 Properties with no model mismatch

The first result regards the evolution of the state vari-

able when the system is driven by a valid switching sig-



nal. In particular, Observation 1 indicates the state vari-

able value in correspondence of request times.

Observation 1. For a dynamic system (1) controlled by a

valid schedule (2), it holds:

xi(ri,k+1) = xi(ri,k)−αon
i Ci,k +αoff

i (Ti,k −Ci,k) (7)

Taking the previous observation into account, it is pos-

sible to establish a relationship between the load utiliza-

tion Ui and the dynamics of the related physical process.

Observation 2. Given the system dynamics as in (1), if the

switching signal is valid and it is characterized by Ci,k =
Ci and Ti,k = Ti, ∀k, then it holds:

xi(kTi) = x̄i, ∀k ∈ N ⇐⇒ Ui =
αoff
i

αon
i + αoff

i

. (8)

Observation 2, which can be easily verified by replac-

ing the value of Ui into (7), states that, for every load, the

state variable assumes the same value x̄i at every request

time ri,k if and only if its utilization is set as in (8). It also

shows that, to achieve this result, the load utilization Ui

depends only on αoff and αon. Two key consequences de-

rive from Observation 1 and 2. First, since a state variable

assumes the same value at every request time, the analy-

sis of global properties (i.e., for every time t) of the state

variable can be performed by restricting the analysis to

one period. Second, since the remaining results derived

in this section are based on Observation 2, they hold for

deadlines less than periods. In fact, (7) does not depend

from the actual points in time when a load is activated

within a period. Therefore, deadlines can be shortened to

improve the system responsiveness without affecting the

achievement of user requirements. Clearly, the shorten-

ing can be performed as far as timing constraints can be

met by the scheduling algorithm. The formal derivation of

this property can be found in [8]. This is a relevant result

since, in the analysis of traditional real-time computing

systems, substantial complications arise when deadlines

are allowed to be less than periods. Due to above observa-

tions, deadlines will not be considered in the reminder of

the paper.

The next relevant result is re-called by Theorem 1. It

allows to calculate the upper bound on the period Ti such

that, if used together with the load utilization Ui as in (8),

it guarantees that load the state variable xi(t) is main-

tained within the required range [xmin
i , xmax

i ].

Theorem 1. For a dynamic system (1) driven by a valid

switching signal (2) characterized by Ui and Ti, if Ui is

assigned as in (8) then it exist an upper bound T ∗
i for the

switching signal period such that:

Ti < T ∗
i =⇒ xmin

i ≤ xi(t) ≤ xmax
i , ∀t ∈ R

+ (9)

and the value for this upper bound is:

T ∗
i = min

{

xmax
i − x̄i

αoff
i (1− Ui)

,
x̄i − xmin

i

αon
i Ui

}

(10)

Theorem 1 allows to determine suitable values of tim-

ing parameters to achieve the requirements on physical

variables.

3.2 Effects of modeling errors

The results introduced in Section 3.1 essentially con-

sist of an open-loop control strategy whose parameters

are tuned to meet the desired system constraints and re-

quirements on the state variable. In particular, the uti-

lization is set according to Observation 2. However, this

approach may lead to the violation of user requirements

when inaccuracies are present and not properly taken into

account. Inaccuracies are determined by several factors:

mismatch between the physical system and the adopted

model, rounding in calculations, noise or interference on

the physical system. For example, when the value of αoff
i

and/or αon
i is subject to variations due to external factors

(with respect to the adopted model) the results of Obser-

vation 2 may no longer hold. In other words, the value of

a state variable in correspondence to the k-th request time

ri,k may differ from the one in ri,k+1. To cope with the

effect of uncertainties, the relationship between T ∗
i and

physical parameters requires a deeper analysis.

This section extends the model presented in previous

sections by introducing errors that model the uncertainties

on (i) slopes αoff
i and αon

i and (ii) time quantization. Since

hard user requirements are addressed in this paper, uncer-

tainties will be modeled in terms of worst case conditions.

For this purpose, every parameter will be modeled with

an unknown real value, which is assumed to be bounded

within a given interval.

The uncertainties on state variable slopes are modeled

by the parameters introduced in Definition 4.

Definition 4. The difference between the real (unknown)

values of the state variable slopes, i.e. αon
i and αoff

i ,

and the actual parameter values used for the control, i.e.

α̃on
i , α̃off

i ∈ R, is bounded such that:

‖αon
i − α̃on

i ‖ ≤ δoni (11a)
∥

∥αoff
i − α̃off

i

∥

∥ ≤ δoffi (11b)

In Definition 4, the terms δoni , δoffi ∈ R
+ indicate the

known maximum gaps between real values and actual val-

ues of slopes used to trigger the control action.

A second source of modeling approximation is related

with the quantization of real-time parameters with respect

to a given time-base. Since the controller is based on a

digital clock, actual scheduling actions (i.e. load activa-

tions/deactivations) can only occur at integer multiples of

a time quantum τ ∈ R
+. The time quantum can be either

imposed by the system, e.g. by the digital clock of the

computer performing the scheduling algorithm, or it can

be considered as a design parameter. In this second case,

it allows to bound the minimum amount of time between

two consecutive switching actions of loads. In both cases,

a possible source of approximation is due to the quantiza-

tion on the values of activation time Ci and period Ti with



respect to the granularity introduced by τ . Errors deter-

mined by quantization arise since the values of real-time

parameters derived from (8) may not necessarily be inte-

ger multiples of the time-base τ . In presence of errors,

it may happen that some requirements on the state vari-

able variation could be violated. Quantization errors are

defined by Definition 5.

Definition 5. Quantization errors δTi and δCi on real-time

parameters Ti and Ci are defined as follows

Ci = C̃i ± δCi (12a)

Ti = T̃i ± δTi (12b)

where T̃i and C̃i represent the ideal values obtained from

calculations, while Ci and Ti are the quantized values.

Supposing to round the ideal value to the closest lower

multiple of τ , it is straightforward to determine the values

of quantization errors by observing that

δCi = C̃i mod τ ≤ τ (13a)

δTi = T̃i mod τ ≤ τ (13b)

It is worth to note that the effect of δTi can be easily

eliminated by selecting Ti = kτ , for some k ∈ N, pro-

vided that Ti ≤ T ∗
i as required by Theorem 1 for achiev-

ing the user requirements. Moreover, the time quantum τ
is the upper bound of the quantization error.

The effect of approximations on the system behavior

is essentially related to the fact that the result of Obser-

vation 2 may no longer hold due to approximations. In

other words, the value of a state variable xi may be differ-

ent in correspondence to different request times. Hence,

the state variable may drift from the desired value x̄i. A

bound on the maximum variation of the state variable due

to illustrated approximations is provided by the following

theorem.

Theorem 2. At the k-th request time, the drift of the state

variable value from its initial value is bounded to:

‖x(ri,k)− x̄i‖ ≤ kǫi (14)

where

ǫi = C̃i(δ
on
i + δoffi ) + T̃iδ

off
i + α̃on

i δCi

+ α̃off
i (δCi + δTi ) + δoni δCi + δoffi δCi + δoffi δTi

(15)

Proof. The proof is based on the observation that, once er-

rors have been modeled as in Definition 4 and 5, the terms

in (7) provided by Obs. 1 are all affected by errors. The

goal is to find the value of ǫi, which is an upper bound on

the absolute value of the error on x(kTi) by (14). The

value of ǫi can be derived from (7) by considering the

additive and multiplicative properties of uncertain values

(see [13] for details).

(a)
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Figure 3. Effect of errors in absence (a) and
with compensation (b). In (a) the state vari-

able constantly drifts from the desired value

xi(ri,k), causing the violation of user re-
quirements. In (b) the state variable at ev-

ery request time ri,k is maintained within a
bounded range centered in x̄i by properly

setting the value of C̃i,k.

The state variable value results to be increased or de-

creased by a maximum of ǫi at each subsequent request

time, as illustrated in Figure 3.a. Therefore, the system

can no longer be suitably controlled by using the value of

timing parameters as calculated in absence of errors. This

issue can not be avoided unless a proper feedback on the

state variable is introduced to dynamically adapt real-time

parameters according to measured values. In other words,

it is mandatory to suitably measure the actual value of the

state variable to compensate the effect of uncertainties.

3.3 Using feedback to cope with uncertainties

To properly control the system in presence of errors the

effect of such errors must be compensated. For this pur-

pose, a feedback approach is proposed to adapt the value

of timing parameters Ti,k and Ci,k at every request time

ri,k. The adapted value will be valid for the next time

frame [ri,k, ri,k+1). The idea is to measure the value of

the state variable in correspondence to a request time. The

measured value at time t is denoted with x̂i(t). The de-

tected gap between measured value x̂i(ri,k) and expected

value x̄i is used to calculate the actual values of Ci,k and

Ti,k. Such values are set to guarantee that the state vari-

able will fall into a bounded range in correspondence to

the next request time ri,k+1, and user requirements are



met in the time frame [ri,k, ri,k+1).
Since the feedback technique is based on the measure-

ment of the state variable in correspondence with request

times, the measurement error is firstly defined to account

for the uncertainty on the measurement.

Definition 6. The measurement error on the state variable

xi(t) is bounded by a known constant δxi , defined as

‖x̂i(t)− xi(t)‖ ≤ δxi (16)

where x̂i(t) represents the measured value, while xi(t) is

its unknown real value.

Considering the model for the measurement error, a

theoretical result is provided to allow the compensation

of errors arising from sources modeled by definitions 4, 5

and 6.

Theorem 3. Given the system model (1), the definitions

of parameter uncertainties (11)-(12) and the error model

on sensor measurements (16), if C̃i,k and T̃i,k are set in

order to balance the following equation

x̄i − x̂i(ri,k) = T̃i,kα̃
off
i − C̃i,k

(

α̃on
i + α̃off

i

)

(17)

then

‖xi(ri,k)− x̄i‖ ≤ ǫi,k + δxi , ∀k ∈ N (18)

Proof. The goal is to determine the values of Ti,k and Ci,k

so that xi(ri,k+1) = xi(ri,k) = x̄i in (7). However, the

terms in (7) are affected by errors with known bounds, as

stated in Definitions 4, 5 and 6, where known terms are

x̂i, α̃
off
i , α̃on

i . Therefore, it can not be achieved to obtain

exactly xi(ri,k+1) = x̄i. However, it is guaranteed that

xi(ri,k+1) will fall in an interval containing x̄i, as stated

in (18). This latter is obtained simply from (7) by inserting

the expression of the errors. Finally, since xi(ri,0) = x̄i

by the system model definition (1), (18) holds for every

k ∈ N.

In (18), the term ǫi,k has the same expression of ǫi
(i.e. (15)) where the terms C̃i,k and T̃i,k replace C̃i and

T̃i, respectively. Considering a bound on the maximum

value of period and activation time and calling it C∗
i

.
=

supk Ci,k and T ∗
i

.
= supk Ti,k, it is possible to bound ǫi,k

as follows:

0 ≤ ǫi,k ≤ ǫ∗i , ∀k ∈ N. (19)

Theorem 3 provides a convenient method to achieve

the desired system behavior in presence of errors. In fact,

the state variable is bounded in the range x̄i ± (ǫi + δxi )
at each request time ri,k : ∀k ∈ N. See Figure 3.b for

an illustration where C̃i,k is changed while T̃i,k is kept

constant.

In order to meet the user requirements Ψi expressed

in (3), Theorem 1 must be extended to take into account

modeling and measurements errors and the variability of

T̃i,k and C̃i,k.

Theorem 4. If the values of T̃i,k and C̃i,k are chosen to

balance Eq. (17) and the following conditions are satisfied

{

xmin
i ≤ x̂i(ri,k)− δxi − (α̃on

i + δoni )Ci,k

xmax
i ≥ x̂i(ri,k) + δxi + (α̃off

i + δoffi )(Ti,k − Ci,k)
(20)

then

xi(t) ∈
[

xmin
i , xmax

i

]

, ∀t ∈ R
+

Proof. In [8] has been proved that the maximum (mini-

mum) possible value of the state variable xi, depending on

the scheduling signal si, occurs when the activation time

is concentrated at the end (beginning) of the time frame

defined by one period. Formally,

inf
t∈[ri,k,ri,k+1]

xi(t) = xi(ri,k)− αon
i Ci,k (21a)

sup
t∈[ri,k,ri,k+1]

xi(t) = xi(ri,k) + αoff
i (Ti,k − Ci,k) (21b)

Thus it must be guaranteed that:

{

xmin
i ≤ xi(ri,k)− αon

i Ci,k

xmax
i ≥ xi(ri,k) + αoff

i (Ti,k − Ci,k)
(22)

Considering the worst case scenario for errors that affect

the terms in (22), (20) follows directly and the thesis of

the Theorem holds since (21).

From (16), (18) and (19), it follows that the gap be-

tween measurement and expected value of the state vari-

able at the k-th request time is bounded:

‖x̂i(ri,k)− x̄i‖ ≤ ǫ∗i + 2δxi , ∀k ∈ N (23)

Thanks to (23) and considering the constraints derived

in (20), upper bounds T ∗
i and C∗

i can be calculated, re-

spectively on period and activation time, so that user re-

quirements are satisfied.

The opportunity to select appropriate periods and acti-

vation times at every request time suggests some interest-

ing considerations related to the guarantee of timing con-

straints. In fact, the utilization Ui,k = Ci,k/Ti,k ranges in

an interval from 0% (i.e. when Ci,k = 0 and Ti,k > 0,

which are possible values according to the constraints) to

100% (for some Ci,k = Ti,k > 0). From (17), it is pos-

sible to derive the expression of Ui,k in the [ri,k, ri,k+1]
time frame as follows. To simplify the presentation of sub-

sequent results, two equivalent expressions are provided,

respectively, as a function of Ci,k and Ti,k.

Ui,k =
Ci,kα̃

off
i

Ci,k(α̃off
i + α̃on

i ) + x̄i − x̂i(ri,k)
(24a)

=
Ti,kα̃

off
i + x̂i(ri,k)− x̄i

Ti,k(α̃off
i + α̃on

i )
(24b)

In order to apply existing utilization-based schedula-

bility tests, it is possible to set a constant activation time

Ci,k = Ci ≤ C∗
i , ∀k, and set periods Ti,k according to



the result of Theorem 3. In this case, taking into account

equations (23) and (24a), the highest possible utilization

can be expressed as follows.

Ui
.
= sup

k∈N

Ui,k =
Ciα̃

off
i

Ci(α̃off
i + α̃on

i )− ǫ∗i − 2δxi
(25)

The utilization derived in (25) can be used to test the

schedulability of the load set.

4 Considerations on results

To summarize, to compensate the effects of uncertain-

ties the actual values of Ti,k and Ci,k are adapted depend-

ing to the gap between the measured value of the state

variable x̂i and its expected value x̄i. While there is the

possibility to simultaneously change both period and acti-

vation time, a simpler solution is to keep constant one of

the two parameters and change the other one.

The option to maintain a constant period Ti and to

change the activation time Ci,k makes the resulting sys-

tem identical to the well known task model with strict pe-

riods. In this case, the longest possible activation time

plays the role of the Worst Case Execution Time (WCET)

in the traditional task model. It is straightforward to show

that the longest possible activation time occurs when the

measured value of the state variable is equal to the high-

est possible value. The corresponding utilization can be

calculated using (24b), and such value can be used for the

schedulability test.

The other option is to maintain a constant activation

time Ci and to change the period Ti,k at each request

time. This option makes the resulting system working as

the traditional sporadic task model, where periods repre-

sent the minimum time frame between two consecutive

request times. In this case, the shortest possible period

will occur when the measured value of the state variable

is equal to the lowest possible value, and the utilization is

expressed by (25). The option to dynamically change the

period within an interval given by:

Ti,k ∈

[

Ci

Ui

,
Ci(α̃

off
i + α̃on

i ) + ǫ∗i + 2δxi
α̃off
i

]

(26)

suggests the possibility to apply techniques like the elastic

scheduling [2] to the system model used in this paper. An

interesting result could be to formally put into relationship

the value of the elastic coefficient to physical system pa-

rameters. Depending on the system characteristics and re-

quirements, the designer can choose the most convenient

option.

5 Conclusion

This paper presented a modeling and control approach

for power systems where the physical system is modeled

as a set of real-time activities that can be scheduled by

adapting traditional real-time scheduling algorithms. In

particular, this paper discusses the application to the peak

load minimization where electric loads having integrator

dynamic are controlled under timing and physical con-

straints. To make the proposed methods applicable in re-

alistic scenarios, the analysis is carried out considering

physical parameters affected by unknown (but bounded)

errors. A feedback control technique is provided to cope

with modeling errors, and formal properties of the pro-

posed method have been derived.
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