
An Embedded Real-Time System for Autonomous
Flight Control

Mauro Marinoni∗, Tullio Facchinetti∗, Giorgio Buttazzo∗ and Gianluca Franchino∗
∗University of Pavia, Pavia, Italy

Abstract— Unmanned Autonomous Vehicles (UAV) represent
an attractive solution for those monitoring applications in
hazardous environments, where direct human intervention is
difficult or impossible to achieve. Small autonomous aircrafts
represents a convenient possibility for monitoring large areas,
for example for detecting fires and following their evolution.
Controlling such systems, however, is very challenging due to
the limited resources available onboard and to the high number
of constraints, including weight, space, time, energy, and cost.

This paper presents a real-time flight control system for an
autonomous aircraft model. The control system runs on an em-
bedded hardware platform that includes the microcontroller, the
sensors for navigation and environment monitoring, the power
management circuit and the wireless communication system. The
applications is implemented on top of a real-time operating
system suitable for embedded microprocessors, which manages a
set of concurrent activities dedicated to sensory acquisition, flight
control, communication, and resource management (including
energy).

I. INTRODUCTION

In the last years, electronic embedded devices (e.g., cam-
eras, mobile phones, portable music players, navigation sys-
tems) have been growing exponentially, becoming more and
more complex in terms of system functionality. Features are
added at an unprecedented speed by carefully programming
general-purpose embedded microcontrollers and the applica-
tion code typically consists of several thousands lines of code
involving a large number of parallel activities. Embedded sys-
tems based on microcontrollers are also installed on airplanes,
cars, factory implants, where it is common to find tens or
hundreds of inter-connected devices, each dedicated to specific
tasks [1].

Developing small embedded system presents several chal-
lenges, due to size and weight constraints [2]. Size reduction
implies the use of small microprocessors with limited memory
and processing power, which represents a severe constraint for
the software, which must be carefully designed to efficiently
exploit the available resources. Moreover, if the system is
powered by batteries, energy management policies must be
applied at different levels of the architecture to reduce power
consumption and prolong the system lifetime as much as
possible [3].

When embedded control systems tightly interact with the
environment, as for a flight control system, the tasks running
on the microcontroller are subject to stringent timing con-
straints, which must be enforced by the operating system to

This work has been partially supported by the Italian Ministry of University
Research under contract 2004095094 (COFIN 2004).

guarantee stability and achieve a desired level of performance.
Real-time constraints are typically specified by deadlines,
activation periods, response times, input-output delays, and
jitter requirements. Their specific values are dictated by the
dynamics of the system-environment interactions.

The operating system has a crucial role in guaranteeing the
application performance, because the timing behavior of the
application strictly depends on task scheduling, interrupt han-
dling, synchronization protocols, and resource management
algorithms. The simplest way for enforcing timing constraints
to the application is through a static schedule implemented
by a cyclic executive. However, this solution is not flexible to
changes and is very fragile under overload conditions. Hence,
a priority-based kernel is more suitable to support dynamic
control applications with variable computational requirements
[4].

There are several real-time operating systems available in
the market, both free and proprietary, but very few of them
are suitable for small embedded microcontrollers with limited
processing resources. VxWorks [5] and QNX Neutrino [6]
are two examples of commercial kernels commonly used in
real-time control applications. Another real-time kernel widely
used in the industry is MicroC/OS [7], which is a preemptive
real-time kernel written in C, available for more than twenty
different microprocessors. Among the open source kernels
related to Linux, RTLinux [8] and RTAI [9] use a small
real-time executive as a base and execute Linux as a thread
in this executive, whereas Linux-RK [10] directly modifies
the Linux internals. Most of these kernels, however, do not
implement the state-of-the-art features derived from the real-
time scientific literature, and are not easy to modify. More
flexible kernels are MarteOS [11] (written in ADA), allowing
the user to specify the scheduler at the application level,
and Shark [12]) (written in C), which is a modular kernel
handling tasks with different criticality and allowing the user
to select the algorithms for task scheduling and shared resource
management. However, all the kernels mentioned above are
designed for medium size applications and are not suited for
small microcontrollers. On the other hand, very small kernels
have limited real-time features. For example, TinyOS [13] is
widely used in sensor networks to support the tasks running
on the Motes, but it uses a FIFO queue for task scheduling
and it cannot handle timing constraints.

This paper describes a low-cost embedded control system
for a small Unmanned Autonomous Vehicle for surveillance
and fire prevention. Several constraints have been taken into
account in the design, including light weight, small size,



low cost, low energy consumption, small memory usage,
and sufficient computational power for performing navigation
and sensory processing in real-time. The weight constraint is
particularly relevant, since the overall payload of the aircraft
is only 120 grams. Other autopilot systems available on the
market have been considered for the purpose. For example,
the MP2028g from Micropilot [14] has a weight of 28 grams
only, but it is too expensive and its software is not open to
modify the control algorithm and integrate other sensors.

The solution presented in this paper performs both au-
tonomous navigation and mission related activities, and it is
flexible enough to allow easy interchange of sensors and for
adapting the vehicle to different monitoring applications. The
aircraft model has two flight modes: manual and autonomous.
While in manual mode, a human operator can control the flight
speed and direction using a remote control from the ground
station, which is useful during take off and landing phases.
While in autonomous flight mode, the onboard controller is
programmed to follow a desired trajectory (specified through
a number of set points) without human intervention.

To predictably manage concurrent activities with periodic
and aperiodic activations and explicit timing constraints, the
application is implemented on the Erika Enterprise real-time
kernel [15]. It is an advanced real-time operating system
available on the market that has been specifically designed for
minimal embedded systems with limited onboard resources.

The paper is organized as follows: Section II introduces
the onboard control system, including the microcontroller,
sensors, actuators, wireless communication system, and the
real-time kernel; Section III describes the control application,
from data capturing to actuators control and related real-time
issues; Section IV discusses the power-aware issues, including
processor and peripheral device power saving strategies; and,
finally, Section V states our conclusions.

II. SYSTEM DESCRIPTION

The onboard system architecture is illustrated in Figure 1.
It performs sensory acquisition and uses such data to trigger
the motors for speed and direction control during autonomous
flight, control the power consumption of the external devices,
and send the relevant sensor information to the ground station.

A. Onboard controller

The onboard processing unit is a Microchip’s dsPIC
30F6014 microcontroller [16], which integrates the control
features of a Micro-Controller Unit (MCU) with the processing
and throughput capabilities of a Digital Signal Processor
(DSP). It is a 16-bit microcontroller with a maximum pro-
cessing power of 30 MIPS. The model selected for proto-
typing includes a program memory space of 144 KBytes,
a data memory space of 8 KBytes, and a non-volatile data
EEPROM of 4 KBytes. In terms of peripherals the chip
supplies Capture/compare/PWM functionality, 12-bits Analog-
to-Digital Converters (A/D) with 100 Ksps conversion rate
and up to 16 input channels. Connectivity is provided through
a full range of channels: I2C, SPI, CANbus, USART and

Data Converter Interface (DCI), which supports common audio
Codec protocols as I2S and AC’97.

The MCU power management system allows two reduced
power modes, idle and sleep. The idle mode disables the
CPU, but keeps the system clock source operative. Therefore,
the peripherals continue to operate, even though they can
optionally be disabled. In the sleep mode, both the CPU
and the system clock source are disabled, as well as every
peripherals that need the system clock to work. The sleep
mode consumes less power than the idle mode, but, while
the former has a latency of 10-130 µs to resume the system,
the latter has no wake-up delay. The microcontroller supports
a method to disable a peripheral device which consists in
stopping all the clock sources supplied to that module. When
this method is adopted, the device has a minimum power
consumption. This method requires 1 instruction cycle delay
for both disabling and enabling the peripheral device.

B. The real-time kernel
The control application is developed on top of the ERIKA

(Embedded Real tIme Kernel Architecture) Enterprise real-
time kernel [15]. The kernel is organized in a modular fashion
and it is fully configurable both in terms of services and
kernel objects (tasks, resources, and events). It allows the
user to include only those services strictly required by the
application, thus achieving a minimal memory footprint of 2
Kbytes, up to more complete configurations. It is available
for a wide variety of 8, 16, and 32 bit CPUs and supports
advanced scheduling mechanisms, such as Rate Monotonic,
Earliest Deadline First [17] and resource reservations [4]. The
kernel modular design allows reusing the software modules
in different applications, speeding up the development of new
projects or the upgrade of existing projects to more powerful
architectures, and simplifying the maintenance.

The kernel consists of two layers: the Hardware Abstraction
Layer (HAL) and the Kernel Layer. The HAL represents the
very low level kernel layer; therefore, different HALs are
required for different processors (notice that the Kernel Layer
does not change when the ERIKA system is ported on different
platforms) The HAL contains the hardware dependent code to
manage the context switches and to handle the interrupt re-
quests. It supports mono-stack and multi-stack models, where
the former is used in systems with severe memory constraints:
the system designer can choose the best solution depending
on the application. The Kernel Layer is composed by a set
of modules for task management and real-time scheduling
policies. Fixed priority with preemption threshold and Earliest
Deadline First (EDF) with preemption threshold are currently
supported by the kernel. Both use the Stack Resource Policy
(SRP) [18] to share resources between threads and to share
the system stack among the threads while preserving time
predictability.

C. Sensors and actuators
The microcontroller is connected to several sensors and

actuators to perform autonomous flight and environment mon-
itoring. Figure 1 shows the sensors and actuators managed by
the microcontroller. The onboard configuration includes:



MMC inclinometer 3−axis
accelerometer

3 gyroscopes
sensors

2 pressure

temperature
sensor

camera

TX

IR
camera

TX

I2C

SPI

3 2

selector
control

A/D

serial serial

wireless

module
communicationGPS

control
3.3V / 5V

on/off power

pack 1
battery

pack 2
battery

dsPIC
microcontroller

6

Fig. 1. Onboard system architecture.

• 3 gyroscopes, one for each axis;
• 2 pressure sensors, which are needed to evaluate the

pressure at the ground level and the flight speed through
the difference between the pressures detected at aircraft
head and tail;

• one inclinometer;
• an MMC (MultiMedia Card) memory module, used to

store the data logging during the flight;
• a digital 3-axis accelerometer;
• a temperature sensor;
• a GPS module, to determine the absolute aircraft position;
• a wireless communication module, to exchange informa-

tion with the ground station;
• a video camera, for monitoring the environment and

facilitating the manual control when the aircraft is not
visible;

• an infrared camera, for increasing sensitivity in fire
detection.

The microcontroller integrates the bus to communicate
with the sensors. Two different busses, SPI (Serial Peripheral
Interface) and I2C (Inter-Integrated Circuit), together with
the serial line, are used to connect sensors with digital I/O,
depending on the digital communication technology available
on each specific sensor. Since the gyroscopes and the pres-
sure sensors are only supplied with analog output, they are
connected to the microcontroller’s A/D converters, and their
values are sampled at the frequency of 80 Hz.

The microcontroller monitors the power consumption
through a custom power control board, which allows to switch
on/off the cameras for saving energy.

D. Wireless communication system

The wireless communication system is split into different
components: the data communication module, the receiver
for manual control, and two independent channels for video
streaming.

The data communication module, connected and controlled
by the microcontroller (see Figure 1), allows the aircraft to
exchange information with the ground station. While the infor-
mation received from the ground station consists of trajectory
set-points only, the data sent to the ground station includes all
the navigation data that allows a human operator to monitor the
aircraft behavior, and observe specific application parameters
(e.g., pressure, humidity, wind speed, and temperature).

The current onboard setup uses two independent video chan-
nels for the normal and infrared cameras, since they include an
integrated radio-modem, so that the wireless communication
board is dedicated to sensory data.

The receiver for manual control is the regular radio device
used for normal manual operations. In standard aircraft mod-
els, the receiver is directly connected with the motors con-
trolling the throttle and the flaps. To support the autonomous
flight, this scheme has been slightly modified, resulting in the
circuit illustrated in Figure 2. The new scheme introduces
a custom circuit that intercepts the signals coming from
the receiver and the motor control signal generated by the
microcontroller for autonomously controlling the flight. A
dedicated channel from the receiver is used to select the
manual/autonomous navigation mode.

The solution adopted for manual/autonomous control com-
pletely separates the manual control system from the mi-
crocontroller. Therefore, problems that might occur in the
microcontroller (hardware and software failures) do not affect
the manual control.

III. THE CONTROL APPLICATION

The control application for autonomous flight running on the
microcontroller is illustrated in Figure 3. It consists of a closed
loop where the information captured by onboard sensors is
used to control the aircraft direction and orientation in order
to follow the desired trajectory. Each block in Figure 3 is
dedicated to a specific task.



definition
trajectory

algorithm
guidance

stabilization
control &

algorithm
navigation

sensor data
capture

filtering

actuators
data estimation

set−point

relative set−point

absolute

actuators
command

trottle & flaps

control variables

state vector

(1)

(7) (2) (3) (4)

(6)

filtered data sensor data

(5)

Fig. 3. Block diagram of the control application.

selector

auto/manual
3 PWM

3 PWM

from µ

2 PWM

trottle

flaps

3 PWM

receiver
C

1 PWM

autopilot on/off

Fig. 2. Auto/manual selection sub-system.

Block (1) implements the algorithms for defining the refer-
ence trajectory set-points, which can be set before taking off
and changed during the flight. The set-points can be either
absolute or relative to the current aircraft local axis. Since the
control algorithm works with local coordinates, in the former
case the way-point coordinates have to be converted into local
coordinates.

The guidance algorithm in Block (2) defines the command
variables, including speed, height and direction, suitable to fol-
low the given trajectory. Such variables are used in Block (3)
for stabilizing the aircraft and controlling its direction/speed
through a set of PID controllers. Block (3) returns the output
values to control the flaps and the throttle to approach the next
set-point. Then, Block (4) converts such values into the correct
PWM signals for driving the actuators (details on motors
control are illustrated in Section III-B).

During autonomous flight, there are several sensors used
to monitor the aircraft position and direction. Block (5) is
dedicated to sensory data capture through a set of periodic
real-time tasks, whose period is related to the sensor sampling
rate and, in some cases, to energy considerations.

In Block (6), sensory data are filtered to remove the noise
affecting the measurements. This operation is particularly
important for those signals that need to be integrated to derive
the parameters of interest, like those produced by gyroscopes
and accelerometers (see Section III-A), since the integration
accumulates the errors, causing a drift on the estimated loca-
tion.

Absolute Relative (80 Hz)
Linear GPS (1 HZ) Accelerometer
Rotational Inclinometer (6 Hz) Gyroscopes

TABLE I
NAVIGATION SENSORS CHARACTERIZATION.

Finally, Block (7) implements a set of Kalman filters
to determine the state vector components as a function of
the sampled sensory data, which include linear and angular
positions, speeds, and accelerations.

A. Sensor data capture

Most of the sensors depicted in Figure 1 are used to
estimate the aircraft position and orientation, for supporting
the autonomous navigation and allowing the ground station to
track the aircraft motion. The UAV has six degrees of freedom,
3 linear and 3 rotational, that must be estimated to guarantee
a correct navigation. The final goal is to estimate the absolute
amount of such values, with a sufficiently high frequency (80
Hz) to allow the correct trajectory control.

While the GPS and the accelerometers are used to keep
track of the linear motion, the inclinometer and gyroscopes
determine the aircraft orientation (Table III-A). The GPS
and the inclinometer return absolute values for position and
orientation, but they work at a frequency (1 Hz and 6 Hz,
respectively) that is too low for controlling the aircraft. On the
other hand, accelerometers and gyroscopes are fast enough for
the control application, but they can only be used for relative
measurements (Table III-A). Moreover, their values have to
be integrated to get the desired parameter: accelerometers
returns accelerations that have to be integrated twice to get
the position; gyroscopes provide angular velocities that have
to be integrated to get the angles. Since sensors introduce
a measurement error, the integration of the sampled values
accumulates such errors, resulting in an unacceptable drift on
the estimations. The solution is to control the aircraft using
the high frequency values provided by accelerometers and
gyroscopes, opportunely filtered, and exploit the low frequency



Task Period [ms] Variable
GPS 1000.0 Yes
Accelerometer 12.5 No
Inclinometer 200.0 Yes
Gyroscopes 12.5 No
Control 12.5 No
Temperature 1000.0 Yes
Power 1000.0 Yes
Communication 100.0 Yes

TABLE II
ACTIVATION PERIODS OF THE APPLICATION TASKS.

values (from GPS and inclinometer) to periodically reset the
drift on relative measurements [19].

Finally, the system also includes other sensors for mission
specific purposes. Since the main goal of the system is to
detect and monitor fires, the aircraft is equipped with an
infrared camera to detect fire sources in forests and woods,
and a temperature sensor to measure the air temperature in
specific locations in case of extended fires.

B. Actuators control

The actuators consist of two servomotors for the flaps and
a DC motor for the throttle. All the motors are controlled
through Pulse Width Modulation (PWM) signals. While for
servomotors the PWM signals define the motor shaft angular
position, the throttle PWM signal controls the motor speed.
During manual operations the PWM signals are generated
by the receiver based on the commands received from the
remote control. While the aircraft is flying autonomously,
the signals are generated by dedicated output ports on the
microcontroller. The selection between the two PWM signal
sources is performed by the custom board showed in Figure
2 and described in Section II-D.

C. Real-time issues

The control application consists of a set of periodic real-time
tasks interacting through shared memory buffers protected by
mutually exclusive semaphores. A simplified version of the
Stack Resource [18] available in the Erika Enterprise kernel
is used to access the critical sections in a predictable fashion,
preventing unbounded priority inversion [20] and allowing an
off-line guarantee of the application.

Application tasks are periodically activated by the kernel
to perform sensory acquisition and control. Tasks periods are
shown in Table III-C and defined based on the specific sensor
feature and on control considerations. Note that some periods
are fixed and others may change during the flight depending
on specific situations. For example, the sampling rate of the
“fast” navigation sensors is related to the one of the control
task, which is fixed and defined by the sampling frequency
used in the control algorithm. On the other hand, the periods of
remaining tasks have no such a constraint and can be changed
to balance the microcontroller load (and therefore its speed
and power absorption, see Section IV-A) with the accuracy of
the sensed information.

µ Cto

monitor

load

I2C or SPI

Fig. 4. Power consumption monitoring system.

IV. POWER MANAGEMENT

The power management strategy is performed by the mi-
crocontroller in different ways, depending on the energy-
management features available on the peripherals. Hardware
and software components have been integrated to meet several
goals: onboard sensory data processing, real-time computation,
and communication features, while achieving low power con-
sumption. To achieve significant energy saving, power-aware
strategies are adopted within every system module and are
coordinated at the operating system level [21].

All the aircraft onboard systems, including motors, sensors
and embedded control board, are powered by batteries. There
are 2 different battery packs. All the devices required for
manually controlled operation are grouped and powered by
one battery pack; they include the receiver, the manual/auto
selection custom board, the throttle motor and flaps servomo-
tors. The second battery pack feeds sensors and control board.

The battery charge level is monitored by the microcontroller
to adapt the energy management strategy. Figure 4 shows the
custom circuit designed to monitor the charge level for each
battery pack. It is based on the Texas Instruments’s bq27200
chip, expressly designed for monitoring Li-Ion and Li-Pol
batteries.

A. Dynamic voltage scheduling

A widely adopted method to obtain power-aware systems is
Dynamic Voltage Scheduling (DVS) [22]. In DVS techniques,
the processor voltage supply can be decreased to save energy,
since the power absorbtion depends from the third power of
the input voltage supply level. However, decreasing the supply
voltage also limits the maximum clock frequency, hence the
processor speed. Therefore, proper strategies must be adopted
to minimize energy consumption under real-time constraints.

Power-aware scheduling algorithms for a discrete set of
clock frequencies are implemented on top of the dsPIC-
based platform, exploiting the DVS features described in
Section II-A. The simplest strategy exploits the processor sleep
state when there is no work to be executed. In this case,
the processor is completely disabled, and it is resumed by
the system timer for a task activation or after an interrupt
generation from a peripheral device. The sleep state is also
considered as an actual operating mode, and the corresponding
zero speed is included in the set of available speed levels.

A simple approach for power-aware real-time scheduling
uses a fixed processor clock speed, computed off-line to
guarantee system feasibility [22]. However, due to the limited



Module Ion Ioff Vin Ctrl
Accelerometer 750 µA 10 µA 3.3V Yes
GPS 170 mA 10 µA 3.3V No
Temperature 28-550 µA 1 µA 3.3V Yes
TX/RX 35-80 mA 5 µA 3.3V Yes
MMC 25-60 mA 150 µA 3.3V Yes
Gyroscope [x3] 6 mA 5.0V No
Pressure [x2] 10 mA 5.0V No
TX A/V [x2] 60 mA 11.2V No
Camera IR 500 mA 5.0V No
Camera 40 mA 5.0V No

TABLE III
POWER-RELATED PROPERTIES OF ONBOARD PERIPHERAL DEVICES.

number of available discrete frequencies for the system clock,
this solution may cause a waste of energy, because the optimal
clock speed must be rounded to the closest higher speed.
Better results can be achieved by alternating two discrete clock
frequencies, as a PWM signal, to obtain the optimal clock
value [23]. Other approaches calculate different speeds for
each task and set the system clock to the appropriate value
when a context switch occurs [24]. A combination of the two
methods is also possible: the off-line calculation of the optimal
working speed is integrated by on-line reclamation techniques
to further reduce the processor speed and exploit the unused
computation time [25], [26].

B. Peripheral I/O
Significant energy saving is achieved by a careful manage-

ment of peripheral devices. The MCU can turn off each single
device in different operating modes, where each device/mode
pair is characterized by known energy requirements. Table IV-
B shows the power-related properties of peripheral devices.
For each device, Table IV-B reports the current absorbtion in
both enabled (Ion) and disabled (Ioff ) mode, the power supply
voltage (Vin); the Ctrl value indicates whether it is possible
to turn the device in power-saving mode through a dedicated
digital line directly from the microcontroller. A digital power-
control line allows resuming the device faster, without the
need of dedicated circuits. Notice that, while the Ioff value
is available for devices with digital power control only, the
GPS module represents an exception, due to its peculiar power
management, which needs a dedicated (but no digital) line.

The absorption values suggest that, since power consump-
tion ranges from 1 up to 4 orders of magnitudes between
enabled and disabled modes, paying attention to the peripheral
devices power states may lead to dramatic power saving.

Since a relevant amount of energy is consumed for wireless
communication by the radio module, a careful power-aware
design of the communication protocol allows considerable
energy saving (see the TX/RX field in Table IV-B). There are
several issues that can be considered for reducing the energy
consumption in a radio module. A source of energy wasting is
idle listening, which is due to the energy required for listening
to the channel possible incoming messages. A second source
of wasting is due to packet collisions: when two or more
messages are sent at the same time by different nodes, packet
collisions may be experienced, thus producing corrupted pack-
ets; since such packets have to be re-transmitted, extra-energy

has to be consumed. Power-aware communication protocols
have also to take into account the overhearing, occurring when
a node picks up packets that are not sent to it, and the protocol
overhead, due to control packets used in several protocols
to manage the communication (e.g., RTS/CTS packets in the
IEEE 802.11 [27]). Transmission power control [28], [29] is
also useful for saving energy while guaranteeing network con-
nectivity, managing nodes density and allowing spatial reuse
of radio channels. Moreover, minimizing transmission power
can also indirectly reduce energy consumption by reducing the
channel contention and collision between transmitting nodes.

C. Kernel support

The power management system, which is responsible for
selecting the most appropriate power states both for the CPU
and the peripheral devices, aims at providing a uniform pro-
gramming interface, while achieving high efficiency to reduce
the system overhead. Its main features allow:
• to get the maximum power level allowed by the system

for a specific device;
• to get the minimum power level required for the operating

system consistency;
• to get the power level actually used by a device;
• to get the power level required by a running, ready or

idle task;
• to set the power level for a device while the task is

running; the actual device power level will be decided
by the power manager based on all task requirements;

• to set/get the power level required by the task while it is
not running;

V. CONCLUSIONS AND FUTURE WORK

This paper describes a real-time control system for the
autonomous flight of model aircrafts. The description focuses
on all the relevant architecture components. The hardware
platform includes the microcontroller, communication system,
sensors for navigation and environment monitoring, and power
management circuits. The control program running on the
microcontroller is implemented on top of a real-time kernel
to guarantee the timing constraints of application tasks. The
software also controls the power consumption of peripheral
devices and the microcontroller itself, implements the commu-
nication protocol and drives the motors to follow the desired
trajectory.

The proposed architecture has been installed on a aircraft
model for fire monitoring. The specific application justifies the
installation of special sensors for fire detection and monitoring:
infrared camera and temperature sensors are added to the sen-
sors required by the navigation system. The platform is flexible
enough to allow changing the application specific sensors to
adapt the aircraft to other purposes, such as surveillance or
different monitoring activities.

REFERENCES

[1] J. Turley, “Embedded processors,” ExtremeTech,
http://www.extremetech.com, January 2002.



[2] H. Gill, “Challenges for critical embedded systems,” in Proceedings of
the 10th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS), February 2005, pp. 7–9.

[3] R. Melhem, N. AbouGhazaleh, H. Aydin, and D. Mossé, Power Man-
agement Points in Power-Aware Real-Time Systems. R. Graybill and
R. Melhem (editors), Plenum/Kluwer Publishers, 2002.

[4] G. C. Buttazzo, Hard Real-time Computing Systems: Predictable
Scheduling Algorithms amd Applications, 2nd ed. Springer, 2005.

[5] “VxWorks Real-Time OS,” wind River Corp., URL:
http://www.windriver.com/vxworks.

[6] “QNX Neutrino RTOS,” qNX Software Systems, URL:
http://www.qnx.com.

[7] J. J. Labrosse, Micro C/OS-II: The Real-Time Kernel. CMP Books,
2002.

[8] “RTLinux RTOS,” fSMLabs Inc., URL: http://www.fsmlabs.com.
[9] E. Bianchi, L. Dozio, G. L. Ghiringhelli, and P. Mantegazza, “Complex

control systems, applications of DIAPM-RTAI at DIAPM,” in Realtime
Linux Workshop, 1999.

[10] S. Oikawa and R. Rajkumar, “Portable RK: A portable resource kernel
for guaranteed and enforced timing behavior,” in Proc. of the IEEE
Real-Time Technology and Applications Symp., June 1999.

[11] M. A. Rivas and M. G. Harbour, “MaRTE OS: An ada kernel for
real-time embedded applications,” in Proc. of the 6th International
Conference on Reliable Software Technologies (Ada-Europe’2001), May
2001.

[12] P. Gai and G. Buttazzo, “An open source real-time kernel for control
applications,” in Proceedings of the 47th Italian Conference of Factory
Automation (ANIPLA 2003), November 2003, pp. 21–22.

[13] D. Gay, P. Levis, and D. Culler, “oftware design patterns for tinyos,” in
Proc. of the ACM SIGPLAN/SIGBED 2005 Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’05), June 2005.

[14] “Mp202g autopilot,” micropilot Corp., URL:
http://www.micropilot.com.

[15] “ERIKA Enterprise RTOS,” evidence Srl, URL:
http://www.evidence.eu.com.

[16] dsPIC30F family reference manual (DS70046C), 2004, microchip Tech-
nology Inc., URL: http://www.microchip.com.

[17] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,” Journal of the ACM, pp. 40–61,
1973.

[18] T. P. Baker, “A stack-based resource allocation policy for real-time
processes,” in Proc. of the IEEE Real-Time Systems Symp., December
1990, pp. 191–200.

[19] D. Gebre-Egziabher, R. C. Hayward, and J. D. Powell, “A low cost
gps/inertial attitude heading reference system (ahrs) for general avia-
tion applications,” in Proceedings of the IEEE Position Location and
Navigation Symposium (PLANS), April 1998.

[20] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronization,” IEEE Trans. on Computers,
vol. 39, no. 9, pp. 1175–1185, September 1990.

[21] M. Marinoni, G. Buttazzo, T. Facchinetti, and G. Franchino, “Kernel
support for energy management in wireless mobile ad-hoc networks,” in
Proc. of the Workshop on Operating Systems Platforms for Embedded
Real-Time applications (OSPERT’05), July 2005.

[22] P. Pillai and K. Shin, “Real-time dynamic voltage scaling for low-power
embedded operating systems,” in Operating Systems Review (ACM),
18th ACM Symposium on Operating Systems Principles (SOSP), October
2002, pp. 89–102.

[23] E. Bini, G. C. Buttazzo, and G. Lipari, “Speed modulation in energy-
aware real-time systems,” in IEEE Proceedings of the Euromicro Con-
ference on Real-Time Systems, July 2005.

[24] P. M. Alvarez, E. Levner, and D. Mossé, “Adaptive scheduling server
for power-aware real-time tasks,” ACM Transactions on Embedded
Computing Systems, vol. 3, no. 2, pp. 284–306, May 2004.

[25] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez, “Power-aware
scheduling for periodic real-time tasks,” IEEE Transactions on Comput-
ers, vol. 53, no. 5, pp. 584–600, May 2004.

[26] W. Kim, D. Shin, H. Yun, J. Kim, and S. Min, “Performance comparision
of dynamic voltage scaling algorithms for hard real-time systems,” in
Proc. 8th IEEE Real-Time and Embedded Technology and Applications
Symp., San Jose, California, September 2002, pp. 219–228.

[27] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specification, iEEE 1999.

[28] J. Heidemann and W. Ye, Energy Conservation in Sensor Networks
at the Link and Network Layers. Nirupama Bulusu and Sanjay Jha
(editors), 2005, technical Report ISI-TR-2004-599, USC/Information
Sciences Institute, 2004.

[29] R. Ramanathan and R. Rosales-Hain, “Topology control of multihop
wireless networks using transmit power adjustment,” in Proc. of the
IEEE Infocom, March 2000.


