
Kernel Support for Energy Management in Wireless Mobile Ad-Hoc Networks �

Mauro Marinoni, Giorgio Buttazzo, Tullio Facchinetti, Gianluca Franchino
University of Pavia, Italy

�mauro.marinoni, giorgio.buttazzo, tullio.facchinetti, gianluca.franchino�@unipv.it

Abstract

Effective power management in wireless networks of mo-
bile robots requires a proper support from the operating sys-
tem, which must allow the application to dynamically con-
figure the onboard resources to save energy consumption
while guaranteeing the required real-time and performance
constraints. In this paper, we present the kernel mechanisms
necessary to achieve an integrated power management ap-
proach, in which energy saving is achieved at different lev-
els of the architecture, including the processor, the commu-
nication device, and the robot peripherals, like sensors and
actuators.

1. Introduction

The use of coordinated teams of small robots has several
interesting applications, including monitoring, surveillance,
searching, and rescuing. On the other hand, the use of small
robot systems introduces several new problems that need to
be solved for fully exploiting the potential benefits coming
from a collaborative work. Most of the problems are due to
the limited resources typically available on a small mobile
robot. In fact, cost, space, weight, and energy constraints,
impose the adoption of small microprocessors with limited
memory and computational power. In particular, the com-
puter architecture should be small enough to fit on the robot
structure, but powerful enough to execute all the robot com-
putational activities needed for achieving the desired level
of autonomy. Moreover, since such systems are operated by
batteries, they have to limit energy consumption as much as
possible to prolong their lifetime.

In a wireless ad hoc network of mobile robots, energy
can be saved at different architecture levels. At the oper-
ating system level, suitable scheduling and resource man-
agement algorithms can be adopted to execute tasks at the
minimum speed that guarantees the required performance

� This work has been partially supported by the Italian Ministry of
University Research under contracts 2003094275 (COFIN03) and
2004095094 (COFIN04).

constraints. At the network level, the transmission power of
each node can be set at the minimum level that guarantees a
given degree of connectivity. At the application level, spe-
cific devices can be turned off, or configured at a proper op-
erating low-power mode (if any), when they are not used for
a sufficiently long interval of time. Also servomotors can be
driven to drain less current when the robot joints are set in
a configuration that does not demand high torques.

Models to describe the battery charge behavior have been
proposed to help in deriving new approaches to the battery
usage. Benini et al. [5] proposed a flexible discrete-time bat-
tery model that accurately describes the dynamic battery op-
eration, allowing a careful system design accounting for re-
alistic battery lifetime values. In a different work [4], the au-
thors achieved a significant battery lifetime improvement by
steering the power absorption in a multi-battery pack. This
solution may be easily adopted when servomotors are used
as actuating devices.

In the context of real-time systems, different energy-
aware algorithms have been proposed to minimize energy
consumption in the processor. They basically exploit volt-
age variable processors to minimize the speed while guar-
anteeing real-time constraints [15, 2, 3, 9].

In many cases, however, the approaches proposed in the
literature are based on simplifying assumptions, like neg-
ligible overhead or continuous dynamic voltage scaling,
which make them unusable in real applications, especially
in those embedded systems based on small microcontrollers
with very limited operating modes. In some cases, only two
modes are available, so power management can only be
achieved by switching between the two modes using suit-
able strategies. Recently, Bini et al. [6] proposed a method
for analyzing the feasibility of real-time applications that
execute by alternating two speeds, taking overheads into ac-
count.

On the network side, energy-aware algorithms have been
mainly focused on the MAC level. Some others consid-
ered energy conservation in routing problems. Ye et al. [16]
proposed the Sensor-MAC (SMAC) protocol, which is di-
vided in two phases: a sleep period and an active period. In
the sleep period the nodes switch their transceiver off, by
putting it in sleep mode. In the active period, the nodes turn

robolab
Workshop on Operating Systems Platforms for Embedded Real-Time applications (OSPERT), Palma de Mallorca, Spain, July, 2005.



its transceiver in the receiving mode to listen for incoming
communications, or in transmission mode to initiate a com-
munication. Each node can choose its sleep/active schedule,
therefore sleep and active periods have to be locally syn-
chronized between nodes. To synchronize them, nodes ex-
change �� ��� messages, which contain the identifica-
tion number of the sender and the time of its next sleep. The
protocol is carrier sense multiple access with collision de-
tection (CSMA/CD), so the synchronization does not have
to be very strict. The active period is divided in two parts:
the first part is used by nodes to send their �� ��� mes-
sages, if any, while the second part is used for the request to
send messages (RTS), if any.

T-MAC [13], like SMAC, adopts synchronized
sleep/wakeup cycles to allow nodes to operate at low
duty cycles while maintaining network connectiv-
ity. In order to reduce latency, T-MAC proposes a
����	
 � 	
��
�� � � � �
�� (FRTS) scheme to in-
form a node, on the third hop, that there exist a message for
it by sending a FRST packet. Hoesel and Havinga [14] pro-
posed a MAC protocol, LMAC, based on a TDMA
scheme. Time is divided into slots, whose size is suffi-
cient to send entire messages. Each node can have only a
time slot, during which the communication is collision-free.
This implies that energy is not wasted for managing col-
lisions and accessing the radio channel. The schedul-
ing algorithm is distributed and each message is dived
in two parts: a control unit and a payload unit. The con-
trol unit includes several data, such as node identifier,
data size, and a sequence slot number to maintain syn-
chronization between nodes. To save energy, each node
that is not addressed for communication turns its ra-
dio off until the next slot. Moreover, two nodes switch their
transceiver off when the communication between them fin-
ishes.

Yu et al. [17] proposed the Geographic and Energy
Aware Routing (GEAR) algorithm, which considers energy
efficiency. Based on the fact that in the sensor networks
a query is often geographical, GEAR propagates a query
to the appropriate geographical region using energy-aware
and geographically informed neighbor selection heuristics
to route a packet towards the target region. Within a region,
it uses a recursive geographic forwarding technique to dis-
seminate the packet.

What is missing in the literature, however, is an inte-
grated framework for energy-aware control, where differ-
ent strategies can be applied at different levels of the archi-
tecture, from the hardware devices to the operating system,
up to the application level.

In this paper, we present a system wide approach to en-
ergy management applied to all the architecture levels and
integrated with the scheduling algorithm to guarantee real-
time constraints. The method is tailored for an embedded

Communication

Board

Servo Control

Board

Servo Servo Servo

dsPIC

A/D
BUS
CAN I2C

Sensor Sensor

Figure 1. Block diagram of the main robot
components.

robot controller consisting of a dsPIC 30F601x family mi-
crocontroller, capable of driving more than 20 servomo-
tors, and a wireless communication board with different
power/transmission modes.

The rest of the paper is organized as follows. Section
2 presents an overview of the system architecture, describ-
ing the degrees of freedom available in each component to
achieve some form of power management. Section 3 illus-
trates the methods we propose at different architecture lev-
els to limit energy consumption while still meeting real-
time constraints. Section 4 focuses on the kernel support
required to provide flexible power management services to
real-time applications. Finally, Section 5 states our conclu-
sions and future work.

2. System description

The system under consideration consists of a team of
mobile robots that have to cooperate for achieving a com-
mon goal. Each robot can be either a classical wheeled ve-
hicle or a legged walking machine actuated by servomo-
tors, equipped with proximity and special-purpose sensors,
a processing board, and a wireless communication subsys-
tem. Hence, each robot can be seen as a mobile node of
a wireless ad hoc sensor network. A block diagram of the
main robot components is illustrated in Figure 1.

In the following sections we describe the characteristics
of each component installed on each robot unit, focusing on
the features that may enable the implementation of energy-
aware control strategies.

2.1. Onboard microcontroller

The onboard processing unit is a Microchip dsPIC [10],
which seamlessly integrates the control attributes of a mi-
crocontroller (MCU) with the computation and through-
put capabilities of a Digital Signal Processor (DSP). It is
a 16-bit microcontroller where most of the 24-bit wide in-
structions are executed in 1 cycle up to 30 MIPS. The
model selected for prototyping includes a program mem-
ory space of 144 KBytes, a data memory space of 8 KBytes,



and a non-volatile data EEPROM of 4 KBytes. The MCU
presents a full-features software stack, up to 41 interrupt
sources, and 5 16-bit counters with 32-bit working mode.
The DSP engine features a high speed 17-bit by 17-bit
multiplier, a 40-bit ALU, two 40-bit saturating accumula-
tors and a 40-bit bidirectional barrel shifter, and performs
divisions in a 19-cycles loop. In terms of peripherals the
chip supplies Capure/compare/PWM functionality, 12-bits
Analog-to-Digital Converters (A/D) with 100 Ksps conver-
sion rate and up to 16 input channels. Connectivity is pro-
vided through a full range of channels: I2C, SPI, CANbus,
USART and Data Converter Interface (DCI), which sup-
ports common audio Codec protocols, as I2S and AC’97.

The microcontroller allows the application to choose
among three different clock sources: an external oscillator
up to 40 MHz with an internal PLL circuit to boost the fre-
quency up to 120Mhz, an internal clock of 8 MHz, and a low
power clock of 512 KHz. A postscaler can be applied to the
selected source to slow down the frequency of a factor of
4, 16, or 64 to obtain the system clock. Once the clock fre-
quency is selected, it is possible to set the supply voltage at
the lowest level that supports such amount of MIPS. For ex-
ample, slowing down the clock to one-third of its maximum
value the power supply could be lowered to 2.5 Volts. It is
also possible to create a set of frequency/voltage pairs to be
used as power states in dynamic voltage scaling (DVS) al-
gorithms. Changing the clock source is an action that is per-
formed with a latency of 10 periods of the new clock.

The MCU has two reduced power modes, idle and sleep,
which can be entered through the execution of a specific
instruction. In the idle mode the CPU is disabled, but the
system clock source continues to operate. Peripherals con-
tinue to operate, but can optionally be disabled. In the sleep
mode, the CPU, the system clock source, and any periph-
erals that operate on the system clock source are disabled.
This mode consumes less power, but requires a delay from
10 �� to 130 �� when exited, whereas the idle mode has no
wake up delay.

A method is provided to disable a peripheral module by
stopping all clock sources supplied to that module. When a
peripheral is disabled with this feature, it is in a minimum
power consumption state. When the command is sent, the
interested module is disabled after a delay of 1 instruction
cycle. Similarly, when the wake up command is given, the
target module is enabled after a delay of 1 cycle.

2.2. Communication board

In the market there are many transceivers that are suit-
able to build small radio devices that can be used to real-
ize sensor nodes. There are many smart features that can
be exploited to design energy-aware transmission protocols.
Some of them are listed below:

� RSSI (Receiving Signal Strength Indicator) is a value
proportional to the strength of the received RF signal.
It can give a greedy esteem of the distance from the
source, if the transmission power is known.

� Different levels of transmission power. They can be
exploited, in conjunction with the RSSI, to save en-
ergy, adapting the transmission power to the distance
between source and sink nodes.

� Different operating modes. The most common modes
are: ��

�, 	
�
�����, and �	���������. Each
mode consumes different level of energy. When
a transceiver is on sleep it consumes less power
than in others modes, but the time to switch be-
tween modes is different. For example, switch-
ing from ��

� to �	��������� takes more time than
switching from 	
�
����� to �	���������. More-
over, switching between modes consumes energy too.
This latter consideration is important in the communi-
cation protocols design.

The characteristics described above can be found in sev-
eral devices available on the market. A couple of devices
suitable for our class of embedded system are the CC1000
and the ATR86RF211.

The CC1000 is a chip produced by Chipcom, with a
transmission rate of 78,5 Kbaud/sec, a variable transmis-
sion power from -20 to 10 dBm, a minimum supply volt-
age of 2.1V, and a RSSI output pin for signal strength ac-
quisition. It has two operating modes: power-up and power-
down. In the power-down mode, it consumes no more than
1 �A. The transceiver can be set in the ISM (Industrial, Sci-
entific and Medical) and SRD (Short Range Device) fre-
quency bands at 315, 433, 868 and 915 MHz, but can easily
be programmed by a microcontroller to operate at other fre-
quencies in the 300-1000 MHz range.

The ATR86RF211, produced by Atmel, operates in the
ISM band (from 400 MHz to 930 MHz), with a FSK (Fre-
quency Shift Keying) modulation, a data rate of 64 kbps,
and eight digitally selectable power levels. The maximum
transmitter power is 14 dBm in the 433 MHz frequency
band. Its power saving features are: power down mode,
sleep mode, and stand-alone wake up procedure. It con-
sumes no more than 0.5 �A in power down mode and
no more than 3 �A in sleep mode. It is a multi-channel
transceiver with fast frequency shifts (less than 50 �s for
a 100 KHz shift). This feature is suitable to implement
an efficient frequency hopping transmission protocol. The
AT86RF211 is also well adapted to battery operated sys-
tems as it can be powered with only 2.4V. It can be con-
trolled by means of a three wire interface, either by a mi-
crocontroller or by a DSP. Finally it has an RSSI output pin
in order to acquire the strength of the received signal.



2.3. Servomotors

The motors considered in this work are the Hitec HS-
475HB, which include an internal position control loop that
allows the user to specify angular positions through a PWM
input signal. This feature simplifies the external circuitry
and avoids sending feedback signals to the motor control
unit. The internal feedback loop imposes an angular veloc-
ity of 250 degrees per second and the motor is able to gen-
erate a maximum torque of 9.6 kg�cm with a voltage of 6
Volts. Motors are connected to a board that provides them
with the required power supply and the input signals com-
ing from the control layer. The torque applied to the motors
can be estimated by monitoring the current drained by the
servo. Such a current is read by using a Maxim MAX471
chip, which produces an output voltage proportional to its
input current.

Monitoring the servo current absorption can also be ex-
ploited to obtain a level of feedback in servomotors con-
trol. In fact, as described in Section 3.3, the current absorp-
tion is related to the exerted torque and can be used to de-
tect and compensate angular position errors.

3. Power management

Hardware and software components cooperate to reach
the following main goals: low power consumption, onboard
sensory processing, real-time computation, and communi-
cation capabilities. The robot is built with generic mechan-
ical and electrical components, making the low-power ob-
jective more difficult to be satisfied. Nevertheless, the adop-
tion of power-aware strategies inside the software modules
significantly increased the system lifetime. To achieve sig-
nificant energy saving, power management is adopted inside
every system module and needs to be coordinated at the op-
erating system level.

3.1. DVS management

Using the DVS capabilities described in Section 2.1, it
is possible to implement a power-aware scheduling algo-
rithm for a discrete set of clock frequencies. The possibil-
ity to put the processor in a sleep state can be useful for
various purposes. The simplest strategy is to put the pro-
cessor in this state if there is no work to be executed. The
sleep mode can be exited upon the arrival of an interrupt
from a peripheral or from the system timer for a task activa-
tion. The sleep state can also be considered as an actual op-
erating mode, and the corresponding zero speed can be in-
cluded in the set of available speed levels.

The simplest approach for integrating power-aware
scheduling and real-time constraints is to fix the clock
speed to a value computed off line to guarantee system fea-

sibility. Due to the limited number of allowed frequen-
cies for the system clock, this solution may cause a waste of
power consumption. A better result can be achieved by al-
ternating two clock frequencies to reach the ideal value
requested by the theoretical calculation. In fact, alternat-
ing two clock states, as a PWM signal, one can approxi-
mate a speed level that is not available in the processor. In
this way, an optimal speed level can be computed to guar-
antee real-time constraints while minimizing energy con-
sumption, as proposed by Bini et al. [6]. Another approach
is to calculate a different speed for each task and set the sys-
tem clock to the appropriate value when a context switch
occurs. In addition to the off-line calculation of the work-
ing frequency, it is possible to implement an on-line
reclamation technique to further decrease the frequency us-
ing the unused computation time.

Another possibility for reducing energy consumption at
the system level is to use the capability of the MCU to put
each single device in different working modes: each one
with well-known energy requirements. It is also possible to
put a device in a non working state and decide whether the
peripheral could work while the CPU is in the idle state.

3.2. Communication board

In a mobile node, a part from the electromechanical com-
ponents, the radio module is the component that usually
consumes most energy. When designing a communication
protocol for such networks, one must consider the main
sources of energy waste. In the following, we briefly de-
scribe some of them.

The first source is idle listening, which is due to the en-
ergy wasted when listening to the channel to receive pos-
sible messages. The second source is collisions: when two
or more nodes try to send a message at the same time, some
collisions are experienced and the corrupted packets have to
be retransmitted, causing more energy consumption. This is
particularly true in carrier sense multiple access (CSMA)
systems. The third source is overhearing, occurring when a
node picks up packets that are not sent to it. Another source
is due to protocol overhead: simple protocols need less en-
ergy to operate. Some protocols introduce additional con-
trol packets (e.g., RTS/CTS packets in the IEEE 802.11 [1])
to solve the hidden node problem [12]. Such added control
packets consume additional energy.

The energy wasted during communication can also de-
pend on the particular approach used at the MAC-level. For
example, time division multi access (TDMA) protocols are
collision-free, therefore they do not have to consume energy
to retransmit corrupted packets. However, they are charac-
terized by poor scalability, high protocol overhead, and re-
quire to exchange additional information for clocks syn-
chronization.



3 4 5 6 7 8 9 10

x 10
−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t [sec]

I 
[A

]

Figure 2. Current absorption per period in a
servomotor.

Transmission power control [8, 11] is useful to guaran-
tee network connectivity, manage density and allow spatial
reuse of radio channels. Moreover, minimizing transmis-
sion power can also indirectly reduce energy consumption
by reducing the channel contention and collision between
transmission nodes. Balancing density and connectivity net-
works maximize spatial reuse of the spectrum. The trans-
mission power control is often encapsulated in the MAC or
in the routing protocol.

3.3. Servomotors

In mobile robot systems, the energy consumed by mo-
tors is significantly higher than the one spent for process-
ing and communication. Hence, a careful management of
the motor power can remarkably improve the system life-
time. Servomotors are commonly adopted in robotic appli-
cations, since they are cheap and integrate reduction gears
and position control to simplify their usage. A servomotor
is controlled by modulating the duty cycle of a square wave
signal, where the duration of the active pulse defines the an-
gular position of the shaft. The pulse period does not influ-
ence the shaft angular position, but affects the servo current
absorption, since the energy absorption starts at every pe-
riod and its duration depends both on the load and the pe-
riod. Figure 2 shows a typical current absorption in a servo-
motor within a control period.

To assess the behavior of the servo energy consumption,
we performed several tests on the Hitec HS-475HB servo-
motor described in Section 2.3. We carried out several ex-
periments by varying the control period and the load torque.
Figure 3 shows the consumed power as a function of the

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 15 20 25 30 35 40 45 50

period [ms]

P
 [

W
]

80%
70%
60%
50%
40%
30%
20%
10%

Figure 3. Power absorption per period in a
servomotor with different loads percentage
of the maximum load.

control period for different loads. It is interesting to notice
that for loads not exceeding 30% of the maximum value the
power consumed by the servo does not depend on the con-
trol period, while for higher loads it decreases with the con-
trol period.

Figure 4 shows the angular errors between the position
set-point and the real servo shaft position as a function of
the control period and for different applied torques. For
loads higher than 30% of the maximum torque value, the
servo is not able to keep the position set point, and the error
increases with the control period. However, such an error
can be predicted by estimating the exerted torque through
the absorbed current and can be corrected by using an ex-
ternal feedback loop.

On the servomotors side, power consumption can be con-
trolled at two different levels. At the application level, the
robot system can be driven to reach pre-defined postures
that minimize the torques on the robot joints. This strat-
egy can be quite effective in multi-link robots with several
degrees of freedom, such a walking machines and anthro-
pomorphic manipulators. At the signal generation level, a
longer control period allows the driving hardware to main-
tain low-power states for longer time.

4. Kernel Support for Energy Management

This section describes the kernel infrastructure required
to support energy-aware strategies at the application level.
It consists of two parts: a set of mechanisms inside the ker-
nel that implement the methodologies described in the pre-
vious sections and a set of library functions that simplify
the user interaction. In the following, the first part is re-



0

10

20

30

40

50

60

10 15 20 25 30 35 40 45 50

period [ms]

an
g

le
 [

d
eg

re
e]

80%
70%
60%
50%
40%
30%
20%
10%

Figure 4. Shaft position errors with different
periods and loads percentage of the maxi-
mum load.

Power Manager API

Algorithm
Device DVS

Algorithm

CPU Manager
Low Level

Task Scheduler
(EDF)

CPU Manager

Dev nDev 2Dev 1

Device Manager

Figure 5. Block diagram of the Power Man-
ager.

ferred to as the Power Manager, while the second part is
referred to as the Power Management API. The main objec-
tive of the Power Manager is to achieve high efficiency to
reduce the overhead introduced in the system, whereas the
main goal of the Power Management API is to provide an
abstraction layer that allows the user to control the power
consumption of the different resources in a simple and uni-
form fashion. The Power Manager is responsible for select-
ing the most appropriate power states both for the CPU and
the peripheral devices.

A block diagram of the power management architecture
is illustrated in Figure 5. The blocks at the bottom repre-
sent the elements used for the interaction with the hardware,
while the top layer provides the application programming
interface (API) for interacting with the user.

� Blocks from Dev 1 to Dev n represent the low-level
drivers of each single peripheral that the Device Man-

ager uses to control the power states.

� The CPU Manager at the lower level is in charge of
managing the DVS capabilities of the processor work-
ing on the frequency-voltage table.

� The task scheduler interacts with the CPU Power Man-
ager through a set of functions invoked at known
scheduling events.

� The Device Manager controls the operating modes of
the peripherals in order to reduce the power consump-
tion at the system level while guaranteeing consistency
of both the operating system and the application. The
strategy adopted by the Device Manager is decided by
a specific device algorithm, that can be changed by the
user.

� The Device Manager relies on the CPU Manager to in-
tegrate the CPU with all others peripherals. It could
implement different algorithms to reduce power con-
sumption and work as a bridge between the abstrac-
tion used at the higher level and the DVS mechanism
at the bottom layer.

� The set of library functions in the API layer allows the
application to interact with the power-management in-
frastructure in a simple and uniform fashion.

4.1. CPU Power Manager

The main goal of the CPU Power Manager is to select
the most appropriate voltage level and clock frequency in
the processor. The clock management is split into two lev-
els: a lower level related to the hardware and a higher level
related to the DVS algorithm. The lower level is in charge of
manipulating the fundamental CPU parameters, like clock
frequency and voltage level, so it is architecture-dependent,
while the higher level decides the time and the value of the
CPU parameters, so it depends on the DVS scheduling al-
gorithm.

Since each CPU is characterized by a different set of fre-
quencies and voltage levels, and not all possible combina-
tions are allowed, the set of frequency-voltage pairs sup-
ported by the CPU is stored in a table, as shown in Fig-
ure 1. Then, a set of kernel primitives allows the DVS algo-
rithm to retrieve some relevant information, such as the min-
imum voltage compatible with a given frequency, the maxi-
mum frequency consistent with a chosen voltage, or the nor-
malized speed (� � ������) corresponding to the selected
mode. Other primitives also allow reading and writing the
current frequency and voltage level, and managing the sys-
tem time by acting on the system tick.

To simplify the implementation of a power management
scheme for the CPU, the operating system also supplies a
set of hooks for executing specific DVS functions upon the
occurrence of certain events. A list of most relevant events



�� �� �� ��

�� 1
�� 2 4 6
�� 3 5 7 8

Table 1. Table storing the frequency-voltage
pairs allowed by the CPU.

that may require the intervention of the power manager is
reported below:

� System startup - This hook allows to setup the en-
vironment of the DVS algorithm and its initial state.
It can also be used to compute the working frequency
based on the task set parameters.

� Context switch - This hook is important whenever the
DVS algorithm has to modify the clock frequency as
a function of the scheduled task, or perform some re-
source reclaiming based on the unused computation
time.

� CPU idle - When the ready queue becomes empty, the
power manager could set the CPU in a low power con-
sumption mode until a task is activated or an interrupt
is raised.

� Wake-up - When the system exits from a power-
saving status, some action could be executed before
the kernel restarts.

� Power-Management Point - In some cases, hooks
may be explicitly inserted in the applications tasks
through a proper system call, to invoke specific DVS
functions. For example, some algorithms proposed in
the literature [9] require to insert a function in the task
body to calculate the actual computation time with re-
spect to the worst-case one.

Finally, in some other cases, power management may
need to be executed at given time instants, hence the ker-
nel must provide a mechanism to activate a DVS function
by a timer. For example, this functionality is needed by the
Speed Modulation algorithm proposed by Bini et al. [6].

4.2. Device Power Manager

Reducing energy consumption at the system level is pos-
sible because most peripheral devices support various oper-
ating modes and the MCU has the capability of putting each
device in a sleep state. A problem is that some peripher-
als trash the current job when switched in low-consumption
states. For example the A/D converter loses the ongoing ac-
quisition and the UART does not listen to incoming data. To

reduce the power consumption without affecting the behav-
ior of tasks, a system-level coordination is required.

To support power management of peripheral devices at
the kernel level, a pstate type is defined as an array with
size equal to the number of devices in the system. Each el-
ement of the array stores the power state of the peripheral,
where power states are represented by integers sorted by
power consumption.

Three pstate variables are defined in the kernel:

� ���� stores the maximum number of different power
states each device can manage;

� � ��� stores the minimum power level required by
each device for the correct kernel operation.

� � ��� stores the actual power level set by the power
manager for each peripheral device.

Then, two arrays of pstate type are defined for each
task �	 to express its requirements:

� �
��
	 stores the minimum power level for each device

required for the correct behavior of task � 	, while it is
running;

� �	��
	 stores the power levels requested by �	, when it

is not running.

It is worth observing that the proposed approach is gen-
eral enough to include the CPU in the set of devices used
by the task. In this case, the mapping between the power
state values inside the array and the real processor behav-
ior is performed by a function provided by the Power Man-
ager.

The arrays defined above can be used in a static or dy-
namic fashion, depending on the maximum overhead that
can be tolerated in the system. If the overhead has to be min-
imized, the static approach is more suited, where all the val-
ues in the arrays are fixed and computed in the worst case.
Otherwise, each task can dynamically change these values
during execution, so allowing the power manager to reduce
the overall power consumption of the system. As an ex-
ample of dynamic behavior, a task could request a given
power level for the A/D converter only while the acqui-
sition is in progress, and then reset the value to zero. In
the static approach, the re-computation of all power lev-
els is needed only during a context switch, while in the dy-
namic mode the new power state for a device has to be com-
puted every time the running task modifies its power state
requirements. If �	 is the new active task and � is a specific
device, the new value � ��� ��� is computed as the maxi-
mum between � ������, �
��

	 ��� and the maximum value
�	��
������ �� among all values �	��

� ��� for tasks different
than �	. That is:

� ��� ��� � ����� ������� �
��
� ���� �	��

������ ���



where

�	��
������ �� � ���

�
��	��

� ��� � �� �� �	��

4.3. Power Management API

The interaction between the application and the power
management infrastructure occurs through a set of functions
that manipulate the set of pstate arrays. Every function is
implemented to work on a single device. The most impor-
tant functions perform the following tasks:

� Get the maximum power level allowed by the system
to the peripheral;

� Get the minimum power level required for the operat-
ing system consistency;

� Get the power level the device is actually using;

� Get the power level required by the task while it is run-
ning;

� Require a new power level for the device while the task
is in execution; the actual power level for that device
will be decided by the power manager based on all task
requirements.

� Get the power level required by the task while it is not
running;

� Require a new power level for the device while the task
is not running; the actual power level for that device
will be decided by the power manager based on all task
requirements.

� Get the power level required by all the other tasks
while not running;

There are also five functions used to interact with the power-
management algorithms.

� Two of them are used to get/set parameters of the CPU
Manager to tune its behavior.

� Another function is needed to define a Power Manage-
ment Point, that must be explicitly inserted by the user
in the task body.

� The last two functions allow the user to get/set param-
eters of the Device Manager to tune its behavior.

5. Conclusions

In this paper we presented an integrated approach for
achieving energy management in wireless ad hoc networks
of mobile robots. We showed that significant energy saving
can only be obtained by a combined effort at different archi-
tecture levels. At the operating system level, specific power-
aware algorithms can be adopted to set the appropriate oper-
ational mode to minimize energy consumption while guar-
anteeing the timing constraints. At the network level, node

transmission power can be tuned to guarantees a given de-
gree of connectivity and, at the application level, the control
strategies can trade performance with energy consumption,
so that the robot can switch to a different behavior to pro-
long its lifetime when the batteries are low, still performing
useful tasks.

We showed how the proposed techniques can be sup-
ported at the kernel level to implement flexible energy-
aware strategies on the robot resources and on the network.

As a future work, we plan to implement the proposed
strategies in the Erika kernel [7], that will run on the dsPIC
boards embedded in all robot units.

References

[1] Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specification. IEEE 1999.

[2] H. Aydin, R. Melhem, D. Mossé, and P. Mejia Alvarez. De-
termining optimal processor speeds for periodic real-time
tasks with different power characteristics. In Proceedings of
the Euromicro Conference on Real-Time Systems, June 2001.

[3] H. Aydin, R. Melhem, D. Mossé, and P. Mejia Alvarez.
Dynamic and aggressive scheduling techniques for power-
aware real-time systems. In Proceedings of the IEEE Real-
Time Systems Symposium, December 2001.

[4] L. Benini, D. Bruni, A. Macii, E. Macii, and M. Poncino.
Discharge current steering for battery lifetime optimization.
IEEE Transactions on Computers, 52(8):985–995, August
2003.

[5] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and
R. Scarsi. Discrete-time battery models for system-level low-
power design. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 9(5):630–640, October 2001.

[6] E. Bini, G. Buttazzo, and G. Lipari. Speed modulation in
energy-aware real-time systems. In IEEE Proceedings of the
Euromicro Conference on Real-Time Systems, July 2005.

[7] Evidence Srl. ERIKA Enterprise RTOS. URL:
http://www.evidence.eu.com.

[8] J. Heidemann and W. Ye. Energy Conservation in Sensor
Networks at the Link and Network Layers. Nirupama Bu-
lusu and Sanjay Jha (editors), 2005. Technical Report ISI-
TR-2004-599, USC/Information Sciences Institute, 2004.

[9] R. Melhem, N. AbouGhazaleh, H. Aydin, and D. Mossé.
Power Management Points in Power-Aware Real-Time Sys-
tems. R. Graybill and R. Melhem (editors), Plenum/Kluwer
Publishers, 2002.

[10] Microchip Technology Inc. dsPIC30F family reference man-
ual (DS70046C), 2004. URL: http://www.microchip.com.

[11] R. Ramanathan and R. Rosales-Hain. Topology control of
multihop wireless networks using transmit power adjust-
ment. In Proc. of the IEEE Infocom, March 2000.

[12] F. A. Tobagi and L. Kleinrock. Packet switching in ra-
dio channels: Part ii - the hidden terminal problem in car-
rier sense multiple-access modes and the busy-tone solution.
IEEE Transactions on Communication, 23(12):1417–1433,
December 1975.



[13] T. van Dam and K. Langendoen. An adaptive energy-
efficient mac protocol for wireless sensor networks. In Proc.
of the First ACM Conference on Embedded Networked Sen-
sor Systems (SenSys 2003), November 1993.

[14] L. van Hoesel and P. Havinga. A lightweight medium ac-
cess protocol (lmac) for wireless sensor networks: Reducing
preamble transmissions and transceiver state switches. In
Proc. of the 1st International Workshop on Networked Sens-
ing Systems, Tokyo, Japan, June 2004.

[15] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced cpu energy. IEEE Annual Foundations of Computer
Science, pages 374–382, 1995.

[16] W. Ye, J. Heidemann, and D. Estrin. Medium access control
with coordinated adaptive sleeping for wireless sensor net-
works. IEEE/ACM Transactions on Networking, 12(3):493–
506, June 2004.

[17] Y. Yu, R. Govindan, and D. Estrin. Geographical and en-
ergy aware routing: a recursive data dissemination protocol
for wireless sensor networks. Technical Report UCLA/CSD-
TR-01-0023, UCLA Computer Science Department, May
2001.




