
Non-Preemptive Interrupt Scheduling for Safe Reuse of Legacy Drivers in
Real-Time Systems

Tullio Facchinetti, Giorgio Buttazzo, Mauro Marinoni, and Giacomo Guidi
University of Pavia, Italy

{tullio.facchinetti,giorgio.buttazzo, mauro.marinoni, giacomo.guidi}@unipv.it

Abstract

Low-level support of peripheral devices is one of the
most demanding activities in a real-time operating sys-
tem. In fact, the rapid development of new interface boards
causes a tremendous effort at the operating system level
for writing and testing low-level drivers for supporting the
new hardware. The possibility of reusing legacy drivers in
real-time systems would offer the great advantage of keep-
ing the rate of changes with a small programming effort.
Since typical legacy drivers are written to execute in a non-
preemptive fashion, a suitable operating system mechanism
is needed to protect real-time application tasks from unpre-
dictable bursty interrupt requests.

In this paper we present a novel approach suitable for
scheduling interrupt service routines. Main features of the
method include: high priority of the handler, non preemp-
tive execution, bandwidth reservation for the application
tasks, and independence of the interrupt service policy from
the scheduling policy adopted for the application tasks.

1. Introduction

One of the main problems of reusing legacy drivers in
a real-time system is that most interrupt handlers disable
the interruption capability of the processor, executing long
portions of code at the highest priority in a non-preemptive
fashion. As a consequence, a bursty sequence of interrupts
may introduce long blocking delays, which would cause
hard tasks to miss their deadlines and soft tasks to increase
their response time. Under such an execution model for
the interrupts, an off-line guarantee of real-time constraints
could require the system to run with a very low utilization.

On the other hand, enabling the preemption of an in-
terrupt service routine would increase the efficiency of re-
source utilization, but could jeopardize the correct manage-
ment of the device. For example, many device drivers re-
quire a tight management of the delays between consecu-
tive instructions. Hence, a preemption could introduce un-

desired delays, causing potential system instability or in-
consistency. In many cases, a small jitter in the activation
of the interrupt handler (executed in a non preemptive fash-
ion) is tolerated by the application, and it is often safer than
having a preemption during the execution of the handler.

Clearly, a more predictable behavior of the system could
be achieved through a careful programming of the interrupt
handlers and an off-line guarantee of the real-time tasks.
However, such a solution requires a tremendous effort in
terms of low-level programming and testing, due to the
complexity of most modern I/O devices. Considering the
huge amount of open source code currently available for al-
most all kinds of off-the-shelf peripherals, a very appealing
option would be to easily integrate the existing code inside a
real-time system, while still guaranteeing the real-time con-
straints of the application, as well as a stable behavior of the
driver code.

A device driver is often modeled as an aperiodic task,
that is, a sequence of jobs with known worst-case execution
time (WCET) and unknown arrival times. To protect real-
time application tasks from possible overruns due to bursty
interrupt arrivals, drivers can be handled through an ape-
riodic server that bounds the processor demand to a given
maximum utilization (the server bandwidth). Several ape-
riodic service mechanisms have been proposed in the real-
time literature, both under fixed priority [7, 12] and dynamic
priority systems [13, 1]. Unfortunately, most of the pro-
posed approaches assume a fully preemptive system, where
the server can suspend the execution of the driver at any
time, either because of the arrival of a new job with a higher
priority, or because the server budget is exhausted.

LeVasseur et al. [8] presented a method for reusing un-
modified device drivers via virtual machine and proposed a
heuristic approach to avoid preemptions into device driver’s
code. However, they did not consider applications with tim-
ing constraints, hence their method is not suitable for real-
time systems. Abeni and Buttazzo [1] considered the case
in which the served job may use critical sections of code to
share mutually exclusive resources with other tasks, but the
fully non preemptive case was not addressed.

robolab
Proceedings of Euromicro (ECRTS), Palma de Mallorca, Spain, July, 2005.

A possible solution for ensuring a non-preemptive exe-
cution of an interrupt handler is to assign it the highest pos-
sible priority. This can easily be done under a static priority
scheduling algorithm.

Katcher et al. [6] analyzed the overhead introduced by
interrupt management and other kernel mechanisms; how-
ever, their analisys addresses fixed priority systems only.
Leyva-del Foyo and Mejia-Alvarez [8] proposed an inte-
grated approach to interrupt management with related anal-
ysis, but their method requires special hardware support.

Under the Earliest Deadline First (EDF) algorithm [10],
Jeffay and Stone [5] presented a feasibility test for guaran-
teeing the schedulability of periodic task sets running in the
presence of an interrupt handler executed at the highest pri-
ority level. Although this approach guarantees a non pre-
emptive execution of the driver, letting the driver running at
the highest priority level could be too restrictive for the pe-
riodic task set, in terms of feasibility. Allowing a certain
amount of activation delay for the drivers would increase
the bandwidth of the application tasks, while guaranteeing
a safe non preemptive execution of the interrupt routines.

In this paper, we propose a novel service method for han-
dling interrupt activities, with the following characteristics:

• The handler is always executed in a non preemptive
fashion, but the server limits its bandwidth consump-
tion through a suitable budget management that allows
guaranteeing the other real-time activities.

• A hierarchical scheduling approach [9] is used to make
the interrupt server independent of the scheduling pol-
icy, so that either fixed or dynamic priority assign-
ments can be used for the application tasks.

• The server can be tuned to balance its responsiveness
versus its bandwidth consumption.

• The mechanism can be efficiently implemented to re-
duce the extra overhead required in capacity-based
servers to set the timers for the budget management.

• Finally, the context-switch overhead introduced by the
interrupt requests can be easily taken into account in
the guarantee test for the application tasks.

2. Server description

An interrupt requestIi is modeled as an interrupt ser-
vice routine (ISR) with its own worst-case computation
time Ci. The server is defined by 3 parameters: a maxi-
mum budgetQmax, a bandwidthU , and a budget thresh-
old Qθ. The server also keeps two state variables: its cur-
rent budgetQ(t) ≤ Qmax and an activity stateΦ(t), which
can have three values:

• exe. The server is in this state when it executes an ISR;

• ready. The server is ready when there are no pending
interrupt requests and a new incoming request can be
executed immediately without any activation delay;

• idle. The server is idle when a new request cannot be
immediately executed because the previous requests
consumed the available budget below the threshold
Qθ. In this state, the budget is recharged according to
a given replenishment rule, until the maximum level
Qmax is reached or a new request arrives.

The maximum budget (Qmax) is the upper bound for the
current budget and limits the number of ISRs that can be
consecutively executed by the server. The budgetQ(t) is
decreased while an ISR is executing to keep track of the
remaining budget that can be allocated to other requests.
To prevent any preemption of the server, the budget is al-
lowed to be negative. When no request is executing,Q(t) is
recharged at a constant rate.

The U parameter specifies the percentage of processor
allocated to the server, which leaves a bandwidth1 − U
to the application tasks. The value ofU directly influences
the server budgetQ(t), which increases at rateU when the
server is ready or idle, and decreases at rate1 − U when
the server is executing. A higher value ofU makes the bud-
get to decrease more slowly, thus allowing the execution of
a higher number of ISRs before starting the recharge. On the
contrary, decreasingU makes the budget to increase more
slowly, thus letting more space for the application tasks.

The budget thresholdQθ (0 ≤ Qθ ≤ Qmax) defines
the budget level above which the server can start executing
pending requests after an idle period. In other words, when
the budget is exhausted (Q < 0) a new request can only
be started when the budget is replenished up toQθ. How-
ever, if Q > 0 and the server is ready, an ISR can be exe-
cuted even thoughQ ≤ Qθ.

Decreasing the value ofQθ decreases the latency of the
ISR, while increasingQθ decreases the overhead introduced
by the server during IRQ bursts. Such a dependency is bet-
ter explained in Section 3.2.

While the server isidle, the ISRs that cannot be executed
due to the bandwidth limitations are sent to a ready queue,
which can be handled by an arbitrary discipline. Multiple
queues can also be maintained to handle ISR classes with
different latency requirements.

Then, they are fetched from the queue when the proces-
sor can be safely assigned to the server, meaning that the ex-
ecution of an interrupt service does not jeopardize the tem-
poral requirements of the application tasks.

Two examples of server execution are reported in Fig-
ure 1 to better illustrate the budget management mechanism
and the server state transitions.

Qθ

(t)Φ

idle

ready

exe

i r e r re e

ISR1 ISR2 ISR3

Q(t)

Qmax

0

IRQ3IRQ2IRQ1

t

ri

Qθ

(t)Φ

idle

ready

exe

Q(t)

0

e e er

IRQ1 IRQ2 IRQ3

i

ISR1 ISR3ISR2

Qmax

Qmin
t

IRQ4

r

ISR4

e

Figure 1. Samples server budget behavior.

2.1. Server rules

Budget consumption and recharging is regulated by the
following rules:

1. At the system start-upΦ(0) = idle and the initial bud-
get is set to0, i.e.,Q(0) = 0.

2. WhileΦ = idle or Φ = ready, the budget increases at
a constant rateU up to its maximum value. IfQ(t1) is
the budget at timet1 < t2, then

Q(t2) = min{Qmax, Q(t1) + (t2 − t1)U}. (1)

3. WhileΦ = exe, the budget decreases at a constant rate
equals to1−U . If Q(t1) is the budget at timet1 < t2,
then

Q(t2) = Q(t1)− (t2 − t1)(1− U). (2)

The activity status of the server is determined by the
current available budget, by the previous server status and
by the presence or absence of pending ISRs into the ready
queue. The status switches according to the following rules:

• The initial state of the server isidle;

• When an IRQ arrives, ifΦ is exe or idle the ISR is sent
to the ready queue and the server maintains its current
state;

• When an IRQ arrives, ifΦ = ready the server starts
executing the handler andΦ = exe;

• When an interrupt handler terminates the execution, if
Q(t) < 0 Φ switches fromexe to idle; if Q(t) ≥ 0 and
the ready queue is empty, the server switches toready,
otherwise, if an ISR is waiting in the queue, the server
keeps theexe state and starts executing the next ISR;

• WhenQ(t) increasesΦ can only beidle or ready. If
Φ = idle, whenQ(t) reachesQθ and the ready queue
is empty, the server switches toready; if the queue

is not empty it switches toexe and starts executing
the first pending request. IfΦ = ready, whenQ(t)
reachesQθ the server keeps its current status and keeps
recharging up toQmax if there are no IRQs to execute.

ISR
execution

finishes

ISR
execution

finishes

exe

idle

ready

Q(t) < 0

ISR

IRQ
arrival

IRQ arrival

Q(t) >= 0

queue is
empty

IRQ arrival
ISR sent to queue

ISR sent to queue

Q(t) >= 0

not empty
queue is

empty
queue is

ISR waiting
in queue

Q(t) = Q

Q(t) = Q θ

θ

execution
finishes

Figure 2. Server finite-states machine.

Figure 2 illustrates these rules as a finite-state machine.

3. Server Properties

The proposed interrupt server is characterized by the fol-
lowing interesting properties:

• the response time of every single ISR can be predicted
to perform an online guarantee of incoming requests;

• the implementation overhead can be traded for the ISR
latency by acting on the budget thresholdQθ;

• the server parameters can be used to specify the band-
width allocation within a hierarchical framework.

Such a properties will be formally addressed in the fol-
lowing sections.

3.1. Response time and online guarantee

The response time and the finishing time of each ISR can
be determined when the corresponding IRQ is generated.
This is fundamental for adopting admission control mech-
anisms to guarantee the system during overload conditions
due to IRQ bursts. If a deadline violation is predicted, an er-
ror recovery strategy can be triggered.

To describe the algorithm for the online guarantee, we
first introduce two variables:fl keeps track of the finishing
time of the last arrived IRQ, andQl represents the server
budget at timefl, i.e.Ql = Q(tl).

Let us consider an interrupt requestIi triggered at time
ti. We have to calculate thefl andQl variation due to the

new request arrival. In the following explanation we use the
symbolsfnew

l andQnew
l to denote the updated values of the

variables, whereasfold
l andQold

l denote the old values. Ba-
sically, before the evaluation of each equation, the assign-
mentnew value = old value has to be done in order to
make the algorithm working iteratively. If the server ready
queue is empty, then the server can be in one of the three ac-
tivity states:

• If Φ = ready then the handler starts executing imme-
diately, thusfl = ti +Ci andRT (Ii) = Ci, and, since
the budget decreases during the execution ofIi, from
Equation (2) we have:

Ql = Q(fl) = Q(ti)− (1− U)(fl − ti).

Notice that, in the previous equations, the new value
of both fl and Ql (fnew

l , Qnew
l) do not depends on

fold
l andQold

l . This is because, from the point of view
of our algorithm, when the ready queue is empty and
Φ = ready, the next new IRQ can be considered as the
first IRQ ever occurred. For this reason we simply as-
sign the value tofl andQl.

• If Φ = exe there are two cases:

– if Qold
l ≥ 0, then

fnew
l = fold

l + Ci, RT (Ii) = fnew
l − ti

Qnew
l = Q(fnew

l) = Qold
l −(1−U)(fnew

l −fold
l)

– if Qold
l < 0, then the current pending handler is

delayed until the budget will be recharged. We
calculate the timetθ at which the budget will be
recharged by using Equation 1 and by imposing

Qnew
l = Q(tθ) = Qθ = Qold

l + U(tθ − fold
l)

we obtain

tθ =
Qθ −Qold

l

U
+ fold

l .

Then
fnew

l = tθ + Ci

RT (Ii) = fnew
l − ti.

• If Φ = idle, since the ready queue is empty,fold
l and

Qold
l still refer to the finishing time of the last executed

ISR, thus the same relations illustrated for theΦ = exe
case withQold

l < 0 hold.

If the ready queue is not empty whenIRQi arrives,Φ
cannot beready. If it is idle or exe, the same relations pre-
viously illustrated can be used.

3.2. Effect of the budget threshold

The thresholdQθ is used in our model to introduce an
extra-delay between the time at which the server becomes
idle and the time at which it switches toready again. This is
useful to limit the overhead produced by the system timers,
allowing an efficient implementation of the server. The ba-
sic idea is that, whenQθ increases, the system overhead de-
creases but the average ISR response time increases.

Since whenΦ = ready or Φ = exe the server continu-
ously executes the ISRs enqueued into the ready queue un-
til Q(t) < 0, an efficient server implementation may update
the server budget on 3 events only:

1. before the execution of the first ISR fetched from the
queue;

2. after the end of the last executed ISR (whenΦ = idle);

3. whenΦ switches fromidle to ready, becauseQ(t) =
Qθ.

While in the first two situations the only overhead intro-
duced by the server is the computation of the new budget,
the third case requires a system timer to be implemented.
The timer is set when the server becomes idle in order to
trigger an event when the server has to wake up (to switch
Φ to ready and setQ(t) = Qθ). Since the system timers are
usually implemented as interrupt routines, the overhead in-
cludes the context switch time and the execution time of the
required routine. Therefore, the overhead introduced by the
system timers depends on the frequency of the timer activa-
tion events.

Notice that the system timers are not managed by the
server. Although they are also handled as interruptions, they
are generated from the system and they require a separate
mechanism to be managed. The server only handles the in-
terrupts coming from the legacy drivers.

To discuss the effect of the threshold we consider the
worst-case situation in which there is always at least one
ISR waiting into the ready queue. This is the typical situa-
tion during interrupt burst conditions. We assume the dura-
tion of the system timer routine equal toCtimer.

Finally, we consider the non-restrictive assumption in
which all the ISRs have the same durationCint. This as-
sumption requires a little explanation. Since the timers are
triggered when a transition from theidle state to an an-
other state (exe or ready) is required, they are set when
an ISR finishes its execution andQ(t) < 0. Moreover, the
higher the frequency of timer activation the higher the over-
head introduce by them. For a givenQθ, the worst case
happens when an ISR finishes at an instanttend for which
ε < Q(tend) < 0 for an arbitrary lowε, because in this case
the next timer activation is the closest possible to the previ-
ous one. WhenQθ = 0 and there is always an ISR waiting
in the queue, the value ofε is affected only by the duration

of the ISR: the shorter is the ISR execution the shorter isε
and the higher is the overhead. WhenQθ > 0 the overhead
does not depend from the ISR duration only, since it de-
pends even on the ISR arrival order and, potentially, on the
ratio betweenQθ and ISR duration. Here we do not want
to compare the the cases with sameQθ when the ISR char-
acteristics change. We want to compare the cases with dif-
ferentQθ while keeping other parameter fixed. In this sit-
uation,Cint can be assumed as the shortest ISR execution
duration, i.e.Cint = min(Ci).

To estimate the system overhead we need to calculate
the time between two consecutive timer activations. Since
a timer activation occurs when the budget increases up to
Qθ, we have to evaluate the maximum interval∆t in which
Q(t) reachesQθ again after reaching its minimum value
Qmin ≤ 0. Referring to the example illustrated in Figure 3,
let ta be the time at whichQ(ta) = Qθ andΦ switches from
idle to exe, let tb be the time at whichQ(tb) = Qmin and
Φ switches fromexe to idle, and lettc be the time at witch
Q(tc) = Qθ andΦ switches fromidle to exe again. Then,
∆t = (tc − ta). As we will see later, the duration of∆t de-
pends onQθ, Cint andU .

Qθ

IRQ

1 2 3 4 5

Q(t)

t

1 2 3 4 5

kernel timer activations

t a ct

tb

∆t

Qmin

Figure 3. IRQ scheduling with threshold.

To determine the value ofQmin, let us consider the sit-
uation in whichQθ = 0. If there is always an ISR into
the ready queue, the budget follows the behavior illustrated
in Figure 4. At each ISR execution, the budget reaches the
value ofQ(tb) = Qmin. From Equation 2 we haveQ(tb) =
Q(ta)−(1−U)(tb− ta), whereQ(tb) = Qmin, Q(ta) = 0
andtb − ta = Cint, so thatQmin = −(1− U)Cint.

Now let us consider the situation depicted in Figure 3,
whereQθ 6= 0 such thatQθ = nQmin < Qmax for a given
integern. Considering the interval[ta, tb] and Equation 2,
we can writeQ(tb) = Q(ta) − (1 − U)(tb − ta), where
Q(tb) = Qmin, Q(ta) = Qθ. Then, we obtain

ta = tb − Qθ −Qmin

1− U
.

For the interval[tb, tc] we use Equation 1. Since we are
considering the case withΦ = idle, then Q < Qmax

Q =0
Qmin

IRQ

1 2 3 4 5

t

Q(t)

θ

1 2 3 4 5

kernel timer activations

t a t c∆t
tb

Figure 4. IRQ scheduling without threshold.

and the budget is increasing. We can say thatQ(tc) =
Q(tb)+U(tc−tb), whereQ(tb) = Qmin, andQ(tc) = Qθ.
Then, we obtain

tc = tb +
Qθ −Qmin

U
.

We determine∆t as

∆t = tc − ta =
Qθ −Qmin

U(1− U)
.

If Utimer is the bandwidth consumed by the system timers,
in any time interval[t1, t2] between two timer activations,
we have

Utimer =

∑
[t1,t2]

Ctimer

t2 − t1
,

where
∑

[t1,t2]
Ctimer is the total amount of time con-

sumed for the timer management during[t1, t2]. And since∑
[t1,t2]

Ctimer = t2−t1
∆t

Ctimer (becauset2−t1
∆t

represents
the number of timer activations in[t1, t2]), we have

Utimer =
Ctimer

Qθ + (1− U)Cint
U(1− U).

The above expression allows us to derive some interesting
considerations about the threshold mechanism. To achieve
the minimum response time of an ISR the threshold should
be set toQθ = 0. By doing so, we have

Utimer(Qθ = 0) =
Ctimer

Cint
U.

In this case, the bandwidth consumed for the timer man-
agement becomes relevant as soon asCint becomes com-
parable withCtimer. Figure 4 illustrates the schedule ob-
tained on a burst of interrupts without threshold, that is with
Qθ = 0. In such a situation, the oscillation ofQ(t) around
0 produces several activations of the timers used to trigger
the transition ofΦ from idle to ready. If the threshold is
set toQθ > 0, the execution of some ISRs suffers from a
small extra delay, but the number of timer activations de-
creases, since several ISRs are executed together after the
same activation, as shown in Figure 3.

The threshold level can be tuned to balance the handler
response time versus the timer management overhead.

3.3. The hierarchical framework

The interrupt server presented in this paper is assumed
to be handled using a hierarchical scheduling framework
in order to decouple the analysis of the interrupt handling
from the application tasks scheduling [9]. This approach en-
ables our method to be used on top of both fixed priority
and dynamic priority assignment schemes for the applica-
tion tasks.

Almeida et al. [2] also addressed one form of hierarchi-
cal scheduling and presented a schedulability analysis of a
non-preemptive periodic task set with fixed priority within
a dedicated temporal frame, applied to the CAN bus. Feng
and Mok [3] introduced a function to measure the time
made available by a server, and analyzed it for a static allo-
cation of the bandwidth. A hierarchical approach was also
proposed by Shin and Lee [11] to design a server that guar-
antees the application tasks executed separately by different
servers.

In this work, the hierarchical structure of the system is
organized with an upper level, the global scheduler, that
provides the execution time to a lower level, made by one
or more concurrent local schedulers executing the applica-
tion tasks with potentially different scheduling policies. The
analysis is performed using the hierarchical partitioning ap-
proach introduced by Lipari and Bini [9].

Each server is modeled with two parameters:

(i) the maximum bandwidthα is the amount of server
budgetQ available on a periodP , havingα = Q

P ;

(ii) the maximum consecutive idle time (∆).

A server described with such a parameters is guaranteed
both under EDF and RM [10] with the tests reported in [9].

In our approach, the interrupt manager is located at the
lower level of the hierarchical structure, so that it holds al-
ways the highest priority within the system. Then, the server
assigns the computation time to the ISR only if there are re-
quests for interrupts and there is enough bandwidth to sat-
isfy the request. Otherwise, the bandwidth is assigned to
the higher level schedulers and consumed by the applica-
tion tasks.

The schedulability test used to guarantee the application
tasks is based on the method presented in [9], using theα
and∆ parameters. We firstly introduce the following lemma
to bound the continuous execution on the server.

Lemma 1 The maximum server continuous execution time
is

Cw = max
i

Ci +
Qmax

1− U
.

Proof. If the initial budget is at the maximum allowed
valueQmax, the server can execute for a periodQmax

1−U be-
fore the budget reaches the0 value. If a new ISR with
duration equal tomaxi Ci arrives, then the server budget

becomes negative, the server becomes idle, and the bud-
get reaches its lowest value. Therefore, the total execution
time for the worst-case sequence of interrupt requests is
Cw = maxi Ci + Qmax

1−U . 2

Since Cw depends onQmax, one of the results that
comes directly from Lemma 1 is that raising the value of
Qmax makes the server able to respond quickly to an higher
number of requests before becomingidle.

Theα and∆ parameters can be derived from the server
parameters according to the following theorem.

Theorem 1 The server idle time can be represented with
the two parametersα and ∆, where α = 1 − U and
∆ = maxi Ci + Qmax

1−U .
Proof. If the server has a bandwidthU , as derived from
property 1, its idle time has a bandwidth1 − U andα =
1 − U . Delta is the maximum delay which affects the ex-
ecution time passed to the task level scheduler. Such a
maximum delay corresponds to the maximum execution
time of the server. From Lemma 1 we have∆ = Cw =
maxi Ci + Qmax

1−U . 2

4. Experimental results

To test the behavior of the proposed interrupt manage-
ment mechanism, the server has been implemented as a
scheduling module in the Shark real-time operating system
[4]. Then the server has been used to schedule the inter-
rupt requests coming from device drivers imported from the
Linux distribution without any modifications.

To trigger the IRQ generation, we have used a personal
computer (PC) connected to the target machine through a
parallel port. The PC generates explicit IRQs by raising a
signal on the interrupt line of the parallel port. The fre-
quency of the IRQs is controlled by the PC, so that different
bursty situations can be easily tested.

The test application we have set up to evaluate the inter-
ference of the server on the application tasks consisted of
a task set scheduled using the EDF scheduling policy. The
task set is made by several relatively fast hard periodic tasks
with a period of1000µs and a measured computation time
of 93µs. The task set generates a total workload equal to
Uapp = 0.8.

The general interrupt arrival sequence is a burst of re-
quests with a given duty cycleσ. We tested the server in
several situations, by imposing different duty cycles to the
IRQ bursts and by setting different server parameter config-
urations. In all the experiments we measured the ISR acti-
vation latency. The period between two consecutive bursts
is always equal to 8 ms and the burst duration is changed for
each experiment in order to vary the value ofσ. For exam-
ple,σ = 40% means that an IRQ burst of 3.2 ms is gener-
ated every 8 ms. The burst duration is measured by quanta
of 400µs, and in each quantum we randomly generate from

1 to 5 interrupt requests. These values are constrained by the
physical requirements needed for the IRQ generation using
the parallel port.

The ISR latencies are represented in a graph reporting on
the horizontal axis every single ISR activation sorted by la-
tency, and on the vertical axis the corresponding latency.
Such a representation provides the same information of a
traditional histogram, moreover it allows the visualization
of several curves on the same graph, making the latency
comparison easier.

0 5000 10000 15000
0

2000

4000

6000

8000

10000

12000

14000

IRQ index sorted by latency

la
te

nc
y

(m
ic

ro
se

c)

(a)

Qθ = 0

Qθ = 25

Qθ = 50

0 5000 10000 15000
0

5000

10000

15000

IRQ index sorted by latency

la
te

nc
y

(m
ic

ro
se

c)

(b)

Qθ = 0

Qθ = 25

Qθ = 50

Figure 5. ISR activation latency distribution
with different values of Qθ and two different
duty cycles: a) σ = 30% and b) σ = 70%.

Figure 5 reports the results of an experiment in which
Qmax = 50, U = 0.005 and the behavior of the latency was
study with different values ofQθ and two different duty cy-
cles: a)σ = 30% and b)σ = 70%. We notice that, for
Qθ = 0, almost all the ISRs experience a high delay. Rais-
ing the value ofQθ (25 and 50) increases the number of
ISRs that are scheduled without any latency, as shown by
the two curves that start flat and increase later. The differ-
ence between the two pictures is that, in Figure 5 b) the duty
cycle is sufficiently high to keep the ready queue busy all the
time. This implies that every new IRQ is enqueued and the
delay constantly increases. Figure 5 a) shows the typical be-
havior of the latency when the duty cycle is not sufficiently
high to make the server enqueueing all the new arrivals: in-

creasing the value ofQθ the number of ISR that are sched-
uled increases, but the worst latency increases significantly.
As a result, low duty cycles and low threshold make the de-
lay more uniformly distributed.

0 5000 10000 15000
0

2000

4000

6000

8000

10000

12000

14000

16000

IRQ index sorted by latency

la
te

nc
y

(m
ic

ro
se

c)

(a)

σ = 30%
σ = 50%
σ = 70%

0 5000 10000 15000
0

2000

4000

6000

8000

10000

12000

14000

IRQ index sorted by latency

la
te

nc
y

(m
ic

ro
se

c)

(b)

σ = 10%
σ = 30%
σ = 50%
σ = 70%

Figure 6. ISR activation latency distribution
with different values of σ and two different
thresholding levels: a) Qθ = 0 and b) Qθ = 50.

In another experiment shown in Figure 6, we still set
Qmax = 50 andU = 0.005, but we study the behavior
of the latency with different values ofσ and two different
threshold levels: a)Qθ = 0 and b)Qθ = 50. In both graphs
the curves become more abrupt asσ increases, but this be-
havior is much more evident for low threshold levels (case
(a)). Since the speed at which the server is able to sched-
ule the ISRs does not vary, raising the duty cycle and reduc-
ing the threshold have the join effect of keeping the ready
queue always occupied, so that new IRQ arrivals are always
enqueued and their latency constantly increases.

Figure 7 shows the behavior of the ISR latency while
keeping the threshold and the duty cycle fixed (Qθ = Qmax

andσ = 70%) and changingU andQmax.
Increasing the server bandwidthU there is a reduction of

the latency together with a gain on the number of ISR that
are scheduled with zero latency. RaisingU causes two ef-
fects: a lower slope of the budget variation during the ISR
execution, which implies more time to execute the ISRs,
and a higher slope of the budget variation during the bud-

0 5000 10000 15000
0

2000

4000

6000

8000

10000

12000

14000

IRQ index sorted by latency

la
te

nc
y

(m
ic

ro
se

c)

U = 0.5%
U = 1%
U = 3%
U = 8%

0 5000 10000 15000
0

100

200

300

400

500

600

700

800

IRQ index sorted by latency

la
te

nc
y

(m
ic

ro
se

c)

Q
max

 = 8
Q

max
 = 20

Q
max

 = 35
Q

max
 = 50

Figure 7. ISR activation latency distribution
with different values of U and Qmax.

get recharge, which involves less time between two server
activations, thus less latency for the ISRs execution.

RaisingQmax the curves shift to the right, increasing
the number of ISRs that are served with low latencies, but
also increasing the overall worst-case performance in terms
of individual ISR’s delay. This happens because, ifQmax

raises, there is more time to execute ISRs consecutively,
even if the slope of the budget variation does not change.
On the other hand, higher values ofQmax implies higher
values ofQθ (we setQθ equal to the maximum possible
value) and longer recharging periods, so that the worst-case
latency increases consequently.

5. Conclusions

In this work we presented a novel approach for the effi-
cient reuse of legacy device drivers in real-time systems.

Our method enforces a non-preemptive execution of the
interrupt handlers in order to preserve the internal tempo-
ral requirements of the ISRs, that are fundamental for a pre-
dictable behavior of the system. The server runs in a hier-
archical environment with an assigned bandwidth, so that
the real-time application tasks can be guaranteed indepen-
dently from the server. Moreover, the interrupt server pol-
icy is completely independent from the scheduling policy
adopted for the application tasks.

We provided both theoretical and experimental results to
show the effectiveness of our approach. While the theory
validated the properties of the model, the experimental re-
sults showed the performance of the server under some re-
alistic working situations.

The interrupt server has been integrated in the Shark real-
time kernel and it is used to schedule the interrupt requests
coming from device drivers imported from the Linux distri-
bution without any modification.

References

[1] L. Abeni and G. Buttazzo. Resource reservations in dynamic
real-time systems.Real-Time Systems, 27(2):123–165, July
2004.

[2] L. Almeida, P. Pedreiras, and J. A. G. Fonseca. The ftt-
can protocol: Why and how.IEEE Transaction on Indus-
trial Electronics, 49(6):1189–1201, December 2002.

[3] X. Feng and A. K. Mok. A model of hierarchical real-time
virtual resources. InProc. of the 23rd IEEE Real-Time Sys-
tems Symposium, pages 26–35, Austin, TX, USA, Dec. 2002.

[4] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A new ker-
nel approach for modular real-time systems development. In
Proc. of the 13th IEEE Euromicro Conf. on Real-Time Sys-
tems, pages 199–206, Delft, The Netherlands, June 2001.

[5] K. Jeffay and D. L. Stone. Accounting for interrupt han-
dling costs in dynamic priority task systems. InProceedings
of the IEEE Real-Time Systems Symposium, pages 212–221,
Raleigh-Durham, NC, USA, December 1993.

[6] D. Katcher, H. Arakawa, and J. Strosnider. Engineering and
analysis of fixed priority schedulers.IEEE Transactions on
Software Engineering, 19(9):920–934, 1993.

[7] J. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperi-
odic responsiveness in hard real-time environments. InPro-
ceedings of the IEEE Real-Time Systems Symposium, pages
261–270, San Jose, CA, USA, December 1987.

[8] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified
device driver reuse and improved system dependability via
virtual machines. InProceedings of the Sixth Symposium on
Operating Systems Design and Implementation (OSDI ’04),
San Francisco, CA, USA, December 2004.

[9] G. Lipari and E. Bini. Resource partitioning among real-time
applications. InProc. of the 15th Euromicro Conf. on Real-
Time Systems, pages 151–, Porto, Portugal, July 2003.

[10] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment.Journal of
the ACM, 20(1):40–61, January 1973.

[11] I. Shin and I. Lee. Periodic resource model for compositional
real-time guarantees. InProc. of the 24th Real-Time Systems
Symposium, pages 2–13, Cancun, Mexico, Dec. 2003.

[12] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task schedul-
ing for hard real-time system.Journal of Real-Time Systems,
1:27–60, June 1989.

[13] M. Spuri and G. C. Buttazzo. Scheduling aperiodic tasks
in dynamic priority systems.Journal of Real-Time Systems,
10(2):1–32, 1996.

