
Wireless real-time communication protocol for cooperating mobile units1

Tullio Facchinetti1, Giorgio Buttazzo1, Marco Caccamo2, Luis Almeida3

1DIS - University of Pavia
Pavia, Italy

tullio.facchinetti@unipv.it
giorgio@unipv.it

2University of Illinois at Urbana
Urbana-Champagne, Illinois, USA

mcaccamo@cs.uiuc.edu

3DET-IEETA, University of Aveiro
Aveiro, Portugal

lda@det.ua.pt

1 This work has been partially supported by the European Union, under contract IST-2001-34820, and by the Italian Ministry of University

Research (MIUR), under contract 2001097825_003.

Abstract

Advances in wireless communication technology
allow the development of distributed robotic applications
consisting of teams of autonomous mobile units that can
cooperate to achieve a common goal. Real-time
communication among mobile wireless units, however,
requires a careful management of the shared channel in
order to achieve a certain level of predictability in
message exchanging.

This paper proposes a new MAC level protocol that
allows nodes to enter and leave the communication area,
avoiding collisions due to simultaneous transmissions.
The algorithm used for accessing the communication
channel is based on EDF, which allows an optimal
exploitation of the communication channel while
guaranteeing timing constraints on real-time messages.

1. Introduction

Recent progress of wireless communication
technology allows the development of distributed robotic
applications consisting of teams of autonomous mobile
units that cooperate to achieve a common goal. Future
applications will require robots to autonomously operate
in open environments for monitoring and exploration
purposes. Sample applications include space missions,
hazardous environment exploration, civil protection,
demining and surveillance.

Typically, the communication system is based on a
wired backbone, used to connect distant units. However,
in many scenarios considered above a wired
infrastructure cannot be guaranteed, hence a full
autonomy of the robot team can only be achieved
through an ad-hoc network. Since robots interact with
the environment, most of the activities carried out by the
team will be characterized by timing constraints that
need to be enforced on the tasks to guarantee a minimum

level of performance.
In wireless systems, real-time communication among

cooperating robots requires a careful management of the
shared channel in order to achieve a certain level of
predictability in message exchanging. The primary
objective is to reduce the communication overhead and
avoid conflicts caused by simultaneous transmissions. In
the absence of timing constraints, access conflicts can be
resolved by suitable protocols that regulate message re-
transmission. This solution, however, may introduce
unbounded delays that may cause real-time tasks to miss
their deadlines.

Some solutions for addressing this problem have been
proposed in the real-time literature. In [2], the authors
illustrate a real-time protocol at the MAC level based on
the Earliest Deadline First (EDF) scheduling algorithm
(firstly described in [5]) suitable for networks of steady
sensors, but do not address the case of a node that wants
to join or leave the team. Various deadline based
scheduling policies such as Earliest Due-Date (EDD) [4],
Delay-EDD [3], Jitter-EDD [11], Feasible-EDD [9] and
Proactive-EDD [10] have been proposed for the real-
time packet scheduling at the MAC level. They differ in
how deadlines are calculated and assigned for each
arrived packet, and how a packet is selected for service,
but they do not permit any dynamic change in terms of
nodes number. In [7], the BRAIN medium access
protocol is investigated, a method for bandwidth
exploitation and throughput maximization in a
broadcasting environment. Although the approach allows
an efficient exploitation of the available bandwidth, the
periodic traffic is scheduled offline, thus no dynamic
activities are handled. On the other hand, in [1] a
centralized scheduling scheme is proposed to facilitate
handling dynamic requests for periodic message streams,
supporting on-line scheduling and admission control.
However, it is centralized and based on a modified
master-slave technique.

In this paper we propose a new protocol for the MAC

robolab
Proceedings of the 2nd International Workshop on Real-Time LANs in the Internet Age (RTLIA), Porto, Portugal, July 1, 2003.

level that operates directly over the wireless physical
layer. This protocol allows nodes to enter and leave the
communication area, avoiding collisions due to simulta-
neous transmissions. The algorithm used for accessing
the communication channel is based on EDF. This
allows an optimal exploitation of the communication
channel while guaranteeing timing constraints on real-
time messages. For the moment, we consider that all
nodes are constantly connected, so we assume a scenario
without hidden nodes. The detection of a new node in
the communication area is carried out by listening to the
channel during idle communication intervals.

2. Approach

The proposed method assumes that each node is
synchronized with the others and knows the
communication parameters of all the other nodes in the
communication area. In this way, each node may
construct the same EDF schedule for the entire team to
know when it can transmit. Using this approach,
transmission conflicts are avoided because each node
sends messages at different times, according to the order
dictated by the EDF scheduler.

Throughout the paper, it will be assumed that time is
divided into slots of fixed length, and that nodes are
synchronized on a slot basis.

Each periodic message is characterized by 5
parameters: the message identifier Idi, the message size
Ci, the period Ti, the relative deadline Di, and the relative
phase Φi, that is the time for the next instance with
respect to a given temporal mark (the last 4 are
expressed in number of slots). The set of all the Np
periodic messages in the system is gathered in a
communications table Γ defined as below, which is
replicated in all active nodes.

Γ ≡{Mi (Idi, Ci, Ti, Di, Φi), i = 1..Np}

The message parameters determine the size of the
table, which is an issue of great relevance when
accounting for the communication overhead incurred by
exchanging it among the nodes. Notice that this table
must somehow be transmitted to new nodes joining the
team so that they can construct the same schedule.
According to the presented model, only a few bytes are
required to encode the message parameters, e.g. one byte
for each of the first two parameters and 2 bytes for each
of the remaining four, amounting to 8 bytes per message.
Just as an example, for a team of 10 robots, each
broadcasting two periodic messages, the communication
requirements table uses 160 bytes.

2.1 Joining the team
When a new node joins the team, the current

communication requirements table must be updated in
all participating nodes and must be sent to the joining

one. The table transfer technique has also been used in
[8] for the synchronization of backup masters in dynamic
master-slave systems. In the remainder of this section we
propose two different methods for the table exchange
protocol, one based on a periodic table broadcast (PTB)
and another based on a specific aperiodic request table
(ART). In any case, the initial communication between
the joining node and the current team is carried out using
free slots.

PTB - Periodic Table Broadcast
• The bandwidth requirements of the entire team are

periodically transmitted by the active units to allow
each node to construct the EDF schedule. To
minimize switching, such a message is transmitted
by the current active node.

• When a new node wants to share the channel used
by the team, it starts by listening to the channel to
get the information on the communication
requirements of the connected units.

• Using such data, the new unit verifies whether its
bandwidth requirement can be satisfied based on the
current load. Using EDF, this happens if the total
load is less than one.

• If the new request can be accepted, the entering
node reconstructs the current EDF schedule and will
signal its presence and its communication
requirements in the first available slot.

• All the nodes re-compute the schedule considering
the new bandwidth requirements and the new
schedule is started at a given time, so the new node
is integrated in the team.

Figure 1 shows a sample sequence of the steps
performed by a node that wants to join a team. At time
t=9 a new node decides to join the team. It has to listen
to the channel to wait for the scheduling table,
periodically transmitted by the team.

1 1 1 1 1 12 2 2 2333 3 2

⇓ ⇑

M1

M2

M3

ST

σ

new
node

new σ

0 2 4 6 8 10 12 14 16 18 20 22 24

4 8 16 2012

6 12 18

8 160

0

0 2

24

24

0 12

4

24

Figure 1: Acceptance of a new node according to
the PTB method.

Notice that there must be a mechanism to select
which robot from the team will actually send the table.
Since there is no master or other node with special
functionality within the protocol, a fully distributed

mechanism has been developed which reduces switching
between transmission and reception. The idea is to select
the node that just transmitted in the preceding slot to
transmit the table message in the following slot(s). In the
example in figure 1, the table is first transmitted by node
3 and then by node 2. If no node transmitted in the
previous slot, then, the same node that transmitted the
table in the last instance will transmit it again.

Once the table is transmitted, the new node can
perform the acceptance test to verify whether it can be
accepted in the team and, if so, it sends its request to join
the team in the next idle slot after the time it completes
the admission test. From this time on, all the nodes are
aware of the new request and construct the new
schedule, which is executed after a fixed number of slots
after the request.

ART - Aperiodic Request Table
• The bandwidth requirements of the entire team are

transmitted upon explicit request from a unit in a
free time slot.

• When a new node wants to share the channel used
by the team, it starts by listening to the channel to
identify a free slot. The system must guarantee that
the free time in any schedule is long enough to allow
the new unit to transmit without conflicts.

• The new unit uses the free slot to send a request for
receiving the communication requirements of the
connected units.

• Using such data, the new unit verifies whether its
bandwidth requirement can be satisfied based on the
current load.

• If the new request can be accepted, the entering
node reconstructs the current EDF schedule and will
signal its presence and its communication
requirements in the first available slot.

Figure 2 shows a sample sequence of the steps
performed by a node that wants to join a team. At time
t=1 a new node decides to join the team. It listens to the
channel and sends its request in the first idle slot. At this
point, all the nodes perform the admission test and, if the
node can be accepted, the new scheduling table is
transmitted by the last active node in the next available
idle slot, after a certain time necessary to perform the
admission test. Then, the joining node computes the new
schedule, which is started after a fixed number of slots.

1 1 1 1 1 12 2 2 2333

⇓ ⇑

σ
new
node

new σ

0 2 4 6 8 10 12 14 16 18 20 22 24

4

Figure 2: Acceptance of a new node according to
the ART method.

All the nodes re-compute the schedule considering the
new bandwidth requirements, so the new node is
integrated in the team.

Notice that, when a node is broadcasting its data,
possible errors occurring in the data packets or in the
transmission channel do not affect the correctness of the
schedule, which is generated only at precise time
instants. The coherency and synchronization of the
schedules can only be affected by inconsistent message
delivery during the table update protocol when a node is
joining or leaving. For the moment, we will consider
atomic broadcast and thus, inconsistent messages will be
addressed in future work.

2.2 Leaving the team
The case in which a robot wants to leave a team in the

absence of hidden nodes can be exploited by two
methods: (i) the leaving node advances an explicit
request to all the other nodes, using a spare slot in the
schedule; (ii) all the nodes listen to the channel and,
when an idle slot is found in place of a node
transmission, the node is automatically excluded from
the schedule. This method however requires each node
to send a message even when there are no data to be
exchanged. Both methods require the nodes to agree on a
predefined instant at which they re-construct the
schedule without the leaving node.

3. Comparison

In a wireless environment, which is not as reliable as
a wired network, it could be reasonable to have some
sort of leadership to coordinate the incoming requests.
Having a dynamic leader could make the algorithm more
robust against either multiple requests or temporary
network partitioning due to the presence of obstacles in
the medium. Nevertheless, the approaches we presented
above are not based on a master-slave communication
paradigm, which, in such a robotics context, would have
the disadvantage of being master dependent. In fact, a
crash in the master would require a negotiation to
appoint a new master node. The proposed approach,
instead, is self-organizing, in the sense that there are no
nodes with special functions in the team, and no
communication overhead needs to be introduced in the
protocol when a node crashes or leaves the team: all the
nodes in the team notice a lack of transmitted packets
from the dead node, so they simply start with a new
schedule at a given time.

Comparing the two methods, we can see that:
1. The PTB method requires a periodic transmission of

the communications table, whereas in ART it is
transmitted upon request of the joining node. Hence,
PTB introduces more overhead.

2. In the PTB method, the time to send the
communications table can be pre-allocated in the
schedule and taken into account as an additional
periodic activity. With ART, it must be properly
handled and guaranteed as a sporadic activity [6].

3. In both methods, the new node uses idle slots to

communicate with the other nodes in the team. As a
consequence, any reclaiming algorithm (e.g.,
FRASH [2]) must be properly modified to avoid
collisions when the new node starts using a free slot.

4. Using the PTB method, the new node receives the
communications table from the team and may adapt
its request to avoid an overload. Using the ART
method, the active nodes receive the new request
and, in case of overload, may decide to degrade the
quality-of-service (QoS) they are receiving, by
reducing the respective communication require-
ments according to a predefined QoS management
policy. This way, enough bandwidth can be freed for
the new node to be accepted. Further adaptation can
still be done at the joining node side, reducing its
own requirements.

5. In the PTB method, the overhead required to join a
team is limited to a single free slot. After listening
for the communication table (periodically trans-
mitted), a new node should only signal its intention
to join the team, transmitting its own communi-
cation requirements in the first following free slot.
At a given time, all the nodes, including the new
one, start with the new schedule. ART requires
hand-shaking to complete the joining action because
it is the joining node that requests the communi-
cation table. So, at least 2 slots are needed. Both
methods require more than the least number of slots
if a conflict occurs among two or more simultaneous
joining nodes. The priority among the nodes could
be established with classical methods.

4. Other issues and future work

One of the crucial aspects in the proposed protocol is
the sustained synchronization of all schedulers, running
in parallel in all nodes. The synchronization is based on
the reception of packets. As soon as a packet is received,
there is a slot timer in every node that is triggered. A
distributed algorithm adjusts the slot timer count value in
all nodes in order to maintain synchronization. During
periods of communication inactivity, the timer continues
to count and allows maintaining the nodes synchronized
for a given time window that depends on the maximum
clock drifts. To facilitate synchronization, all nodes are
forced to transmit at least one message with a period not
longer than that window, e.g. every 50 slots. Also notice
that, between two consecutive slots there must be an
inter-slot idle gap to accommodate clock drifts.

Another fundamental issue is the slot size, which
impacts on the efficiency of bandwidth utilization. If too
short, the overhead related to packet headers and tails
will grow. If too long, its payload will not be effectively
used by short messages and thus, part of the bandwidth
will be wasted. A value of about 20 to 30 bytes of
payload seems a good compromise to transport both
environmental parameters as well as multimedia streams.
Using a transmission rate of 1Mbit/s it is reasonable to

consider a slot duration of about 250µs.
So far, we assumed that nodes communicate using a

single channel. However, different robot teams can
coexist in the same area using different frequency
channels. Moreover, a robot located in an area common
to two teams could communicate with both teams by
switching frequency at proper times.

When considering power-aware issues, both methods
require listening to the communication channel during
idle slots in order to check the presence of nodes that
want to join the team. A possible solution that could be
applied to the proposed methods to save energy could be
to listen to the beginning only, of idle slots. This would
be enough to identify the presence of a joining node.

As future work, we will address the definition of the
packet frame format as well as the issues of reliability in
the presence of inconsistent message delivery and hidden
nodes, which are particularly relevant in a wireless
medium, typically characterized by its low reliability.

References

[1] L. Almeida, P. Pedreiras, J.A. Fonseca, "The FTT-CAN
protocol: Why and How", Trans. on Industrial Electronics,
49(6), December 2002.

[2] M. Caccamo, L. Y. Zhang, L. Sha, and G. Buttazzo, "An
Implicit Prioritized Access Protocol for Wireless Sensor
Networks", Proc. of IEEE RTSS’02, Dec. 2002.

[3] D. Ferrari, and D. Verma, "A Scheme for Real-time
Channel Establishment in Wide Area Networks", IEEE
Journal on Selected Areas in Communications, Apr. 1990.

[4] J.R. Jackson, "Scheduling a production line to minimize
maximum tardiness", Management Science Research
Project 43, University of California LA, 1955.

[5] C.L. Liu, and J.W. Layland, "Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment",
Journal of the ACM 20(1), pp. 40--61.

[6] Jeffay K. and D. L. Stone, "Accounting for Interrupt
Handling Costs in Dynamic Priority Task Systems", Proc.
of IEEE RTSS’93, pp. 212-221.

[7] L. Lo Bello, O. Mirabella et al., "An approach to comply
with real-time constraints and bandwidth exploitation in
distributed process control systems", IEEE RTSS'99 - WiP,
Phoenix, AZ, USA, 1999.

[8] E. Martins, J. Ferreira, L. Almeida, P. Pedreiras, J.A:
Fonseca, “An Approach to the Synchronization of Backup
Masters in Dynamic Master-Slave Systems”, IEEE
RTSS’02 – WiP, Austin, TX, USA, 2002.

[9] S. Shakkottai and R. Srikant , "Scheduling real-time traffic
with deadlines over a wireless channel", Proc. of
WoWMoM'99, pp. 35-42, August 1999.

[10] K. Teh, P. Kong, and S. Jiang, "Proactive Earliest Due-
Data Scheduling in Wireless Packet Networks", Proc of
ICCT’03, April 2003.

[11] D. Verma, H. Zhang, and D. Ferrari, "Delay-jitter Control
for Real-time Communication in a Packet Switching
Network", IEEE TRICOMM, 1991.

