
C Standard Library

Tullio Facchinetti

8 Maggio 2012

Contents

<assert.h> : Diagnostics
<ctype.h> : Character Class Tests
<errno.h> : Error Codes Reported by (Some) Library Functions
<float.h> : Implementation-defined Floating-Point Limits
<limits.h> : Implementation-defined Limits
<locale.h> : Locale-specific Information
<math.h> : Mathematical Functions
<stdarg.h> : Variable Argument Lists
<stddef.h> : Definitions of General Use
<stdio.h> : Input and Output
<stdlib.h> : Utility functions
<string.h> : String functions
<time.h> : Time and Date functions

<assert.h>

void assert(int expression);

Macro used for internal error detection. (Ignored if NDEBUG is defined where <assert.h> is
included.) If expression equals zero, message printed on stderr and abort called to terminate
execution. Source filename and line number in message are from preprocessor macros FILE

and LINE .

<ctype.h>

int isalnum(int c);

isalpha(c) or isdigit(c)

int isalpha(int c);

isupper(c) or islower(c)

int iscntrl(int c);

is control character. In ASCII, control characters are 0x00 (NUL) to 0x1F (US), and 0x7F (DEL)

int isdigit(int c);

is decimal digit

1

int isgraph(int c);

is printing character other than space

int islower(int c);

is lower-case letter

int isprint(int c);

is printing character (including space). In ASCII, printing characters are 0x20 (’ ’) to 0x7E

(’∼’)

int ispunct(int c);

is printing character other than space, letter, digit

int isspace(int c);

is space, formfeed, newline, carriage return, tab, vertical tab

int isupper(int c);

is upper-case letter

int isxdigit(int c);

is hexadecimal digit

int tolower(int c);

return lower-case equivalent

int toupper(int c);

return upper-case equivalent

<errno.h>

errno

object to which certain library functions assign specific positive values on error

EDOM

code used for domain errors

ERANGE

code used for range errors

Notes:

• other implementation-defined error values are permitted

• to determine the value (if any) assigned to errno by a library function, a program should assign
zero to errno immediately prior to the function call

<float.h>

FLT RADIX

radix of floating-point representations

FLT ROUNDS

floating-point rounding mode

2

Where the prefix FLT pertains to type float, DBL to type double, and LDBL to type long double:

FLT DIG

DBL DIG

LDBL DIG

precision (in decimal digits)

FLT EPSILON

DBL EPSILON

LDBL EPSILON

smallest number x such that 1.0 + x != 1.0

FLT MANT DIG

DBL MANT DIG

LDBL MANT DIG

number of digits, base FLT RADIX, in mantissa

FLT MAX

DBL MAX

LDBL MAX

maximum number

FLT MAX EXP

DBL MAX EXP

LDBL MAX EXP

largest positive integer exponent to which FLT RADIX can be raised and remain representable

FLT MIN

DBL MIN

LDBL MIN

minimum normalised number

FLT MIN EXP

DBL MIN EXP

LDBL MIN EXP

smallest negative integer exponent to which FLT RADIX can be raised and remain representable

<limits.h>

CHAR BIT

number of bits in a char

CHAR MAX

maximum value of type char

CHAR MIN

minimum value of type char

SCHAR MAX

maximum value of type signed char

SCHAR MIN

minimum value of type signed char

UCHAR MAX

3

maximum value of type unsigned char

SHRT MAX

maximum value of type short

SHRT MIN

minimum value of type short

USHRT MAX

maximum value of type unsigned short

INT MAX

maximum value of type int

INT MIN

minimum value of type int

UINT MAX

maximum value of type unsigned int

LONG MAX

maximum value of type long

LONG MIN

minimum value of type long

ULONG MAX

maximum value of type unsigned long

<locale.h>

struct lconv

Describes formatting of monetary and other numeric values:

char *decimal point;
decimal point for non-monetary values

char *grouping;
sizes of digit groups for non-monetary values

char *thousands sep;
separator for digit groups for non-monetary values (left of “decimal point”)

char *currency symbol;
currency symbol

char *int curr symbol;
international currency symbol

char *mon decimal point;
decimal point for monetary values

char *mon grouping;
sizes of digit groups for monetary values

char *mon thousands sep;
separator for digit groups for monetary values (left of “decimal point”)

char *negative sign;

4

negative sign for monetary values

char *positive sign;
positive sign for monetary values

char frac digits;
number of digits to be displayed to right of “decimal point” for monetary values

char int frac digits;
number of digits to be displayed to right of ”decimal point” for international monetary
values

char n cs precedes;
whether currency symbol precedes (1) or follows (0) negative monetary values

char n sep by space;
whether currency symbol is (1) or is not (0) separated by space from negative monetary
values

char n sign posn;
format for negative monetary values:

0
parentheses surround quantity and currency symbol

1
sign precedes quantity and currency symbol

2
sign follows quantity and currency symbol

3
sign immediately precedes currency symbol

4
sign immediately follows currency symbol

char p cs precedes;
whether currency symbol precedes (1) or follows (0) positive monetary values

char p sep by space;
whether currency symbol is (1) or is not (0) separated by space from non-negative monetary
values

char p sign posn;
format for non-negative monetary values, with values as for n sign posn

Implementations may change field order and include additional fields. Standard C Library
functions use only decimal point.

struct lconv *localeconv(void);

returns pointer to formatting information for current locale

char *setlocale(int category, const char *locale);

Sets components of locale according to specified category and locale. Returns string describ-
ing new locale or NULL on error. (Implementations are permitted to define values of category
additional to those describe here.)

LC ALL

category argument for all categories

LC NUMERIC

5

category for numeric formatting information

LC MONETARY

category for monetary formatting information

LC COLLATE

category for information affecting collating functions

LC CTYPE

category for information affecting character class tests functions

LC TIME

category for information affecting time conversions functions

NULL

null pointer constant

<math.h>

On domain error, implementation-defined value returned and errno set to EDOM. On range error, errno
set to ERANGE and return value is HUGE VAL with correct sign for overflow, or zero for underflow. Angles
are in radians.

HUGE VAL

magnitude returned (with correct sign) on overflow error

double exp(double x);

exponential of x

double log(double x);

natural logarithm of x

double log10(double x);

base-10 logarithm of x

double pow(double x, double y);

x raised to power y

double sqrt(double x);

square root of x

double ceil(double x);

smallest integer not less than x

double floor(double x);

largest integer not greater than x

double fabs(double x);

absolute value of x

double ldexp(double x, int n);

x times 2 to the power n

double frexp(double x, int *exp);

if x non-zero, returns value, with absolute value in interval [1/2, 1), and assigns to *exp integer
such that product of return value and 2 raised to the power *exp equals x; if x zero, both return
value and *exp are zero

6

double modf(double x, double *ip);

returns fractional part and assigns to *ip integral part of x, both with same sign as x

double fmod(double x, double y);

if y non-zero, floating-point remainder of x/y, with same sign as x; if y zero, result is implementation-
defined

double sin(double x);

sine of x

double cos(double x);

cosine of x

double tan(double x);

tangent of x

double asin(double x);

arc-sine of x

double acos(double x);

arc-cosine of x

double atan(double x);

arc-tangent of x

double atan2(double y, double x);

arc-tangent of y/x

double sinh(double x);

hyperbolic sine of x

double cosh(double x);

hyperbolic cosine of x

double tanh(double x);

hyperbolic tangent of x

<stddef.h>

NULL

Null pointer constant.

offsetof(stype, m)

Offset (in bytes) of member m from start of structure type stype.

ptrdiff t

Type for objects declared to store result of subtracting pointers.

size t

Type for objects declared to store result of sizeof operator.

<stdio.h>

BUFSIZ

7

Size of buffer used by setbuf.

EOF

Value used to indicate end-of-stream or to report an error.

FILENAME MAX

Maximum length required for array of characters to hold a filename.

FOPEN MAX

Maximum number of files which may be open simultaneously.

L tmpnam

Number of characters required for temporary filename generated by tmpnam.

NULL

Null pointer constant.

SEEK CUR

Value for origin argument to fseek specifying current file position.

SEEK END

Value for origin argument to fseek specifying end of file.

SEEK SET

Value for origin argument to fseek specifying beginning of file.

TMP MAX

Minimum number of unique filenames generated by calls to tmpnam.

IOFBF

Value for mode argument to setvbuf specifying full buffering.

IOLBF

Value for mode argument to setvbuf specifying line buffering.

IONBF

Value for mode argument to setvbuf specifying no buffering.

stdin

File pointer for standard input stream. Automatically opened when program execution begins.

stdout

File pointer for standard output stream. Automatically opened when program execution begins.

stderr

File pointer for standard error stream. Automatically opened when program execution begins.

FILE

Type of object holding information necessary to control a stream.

fpos t

Type for objects declared to store file position information.

size t

Type for objects declared to store result of sizeof operator.

FILE *fopen(const char *filename, const char *mode);

Opens file named filename and returns a stream, or NULL on failure. mode may be one of the
following for text files:

"r"

8

text reading

"w"
text writing

"a"
text append

"r+"
text update (reading and writing)

"w+"
text update, discarding previous content (if any)

"a+"
text append, reading, and writing at end

or one of those strings with b included (after the first character), for binary files.

FILE *freopen(const char *filename, const char *mode, FILE *stream);

Closes file associated with stream, then opens file filename with specified mode and associates
it with stream. Returns stream or NULL on error.

int fflush(FILE *stream);

Flushes stream stream and returns zero on success or EOF on error. Effect undefined for input
stream. fflush(NULL) flushes all output streams.

int fclose(FILE *stream);

Closes stream stream (after flushing, if output stream). Returns EOF on error, zero otherwise.

int remove(const char *filename);

Removes specified file. Returns non-zero on failure.

int rename(const char *oldname, const char *newname);

Changes name of file oldname to newname. Returns non-zero on failure.

FILE *tmpfile();

Creates temporary file (mode ”wb+”) which will be removed when closed or on normal program
termination. Returns stream or NULL on failure.

char *tmpnam(char s[L tmpnam]);

Assigns to s (if s non-null) and returns unique name for a temporary file. Unique name is
returned for each of the first TMP MAX invocations.

int setvbuf(FILE *stream, char *buf, int mode, size t size);

Controls buffering for stream stream. mode is IOFBF for full buffering, IOLBF for line buffer-
ing, IONBF for no buffering. Non-null buf specifies buffer of size size to be used; otherwise,
a buffer is allocated. Returns non-zero on error. Call must be before any other operation on
stream.

void setbuf(FILE *stream, char *buf);

Controls buffering for stream stream. For null buf, turns off buffering, otherwise equivalent to
(void)setvbuf(stream, buf, IOFBF, BUFSIZ).

int fprintf(FILE *stream, const char *format, ...);

Converts (according to format format) and writes output to stream stream. Number of charac-
ters written, or negative value on error, is returned. Conversion specifications consist of:

• %

9

• (optional) flag:

-
left adjust

+
always sign

space
space if no sign

0
zero pad

#
Alternate form: for conversion character o, first digit will be zero, for [xX], prefix 0x
or 0X to non-zero value, for [eEfgG], always decimal point, for [gG] trailing zeros not
removed.

• (optional) minimum width: if specified as *, value taken from next argument (which must
be int).

• (optional) . (separating width from precision):

• (optional) precision: for conversion character s, maximum characters to be printed from
the string, for [eEf], digits after decimal point, for [gG], significant digits, for an integer,
minimum number of digits to be printed. If specified as *, value taken from next argument
(which must be int).

• (optional) length modifier:

h
short or unsigned short

l
long or unsigned long

L
long double

• conversion character:

d,i
int argument, printed in signed decimal notation

o
int argument, printed in unsigned octal notation

x,X
int argument, printed in unsigned hexadecimal notation

u
int argument, printed in unsigned decimal notation

c
int argument, printed as single character

s
char *argument

f
double argument, printed with format [-]mmm.ddd

e,E
double argument, printed with format [-]m.dddddd(e|E)(+|-)xx

g,G
double argument

p
void *argument, printed as pointer

n

10

int *argument : the number of characters written to this point is written into argu-
ment

%
no argument; prints %

int printf(const char *format, ...);

printf(f, ...) is equivalent to fprintf(stdout, f, ...)

int sprintf(char *s, const char *format, ...);

Like fprintf, but output written into string s, which must be large enough to hold the output,
rather than to a stream. Output is NUL-terminated. Returns length (excluding the terminating
NUL).

int vfprintf(FILE *stream, const char *format, va list arg);

Equivalent to fprintf with variable argument list replaced by arg, which must have been initialised
by the va start macro (and may have been used in calls to va arg).

int vprintf(const char *format, va list arg);

Equivalent to printf with variable argument list replaced by arg, which must have been initialised
by the va start macro (and may have been used in calls to va arg).

int vsprintf(char *s, const char *format, va list arg);

Equivalent to sprintf with variable argument list replaced by arg, which must have been initialised
by the va start macro (and may have been used in calls to va arg).

int fscanf(FILE *stream, const char *format, ...);

Performs formatted input conversion, reading from stream stream according to format format.
The function returns when format is fully processed. Returns number of items converted and
assigned, or EOF if end-of-file or error occurs before any conversion. Each of the arguments
following format must be a pointer. Format string may contain:

• blanks and tabs, which are ignored

• ordinary characters, which are expected to match next non-white-space of input conversion
specifications, consisting of:

– %

– (optional) assignment suppression character ”*”

– (optional) maximum field width

– (optional) target width indicator:
h

argument is pointer to short rather than int
l

argument is pointer to long rather than int, or double rather than float
L

argument is pointer to long double rather than float

– conversion character:
d

decimal integer; int *parameter required
i

integer; int *parameter required; decimal, octal or hex
o

octal integer; int *parameter required
u

unsigned decimal integer; unsigned int *parameter required
x

11

hexadecimal integer; int *parameter required
c

characters; char *parameter required; white-space is not skipped, and NUL-
termination is not performed

s
string of non-white-space; char *parameter required; string is NUL-terminated

e,f,g
floating-point number; float *parameter required

p
pointer value; void *parameter required

n
chars read so far; int *parameter required

[...]
longest non-empty string from specified set; char *parameter required; string is
NUL-terminated

[.̂..]
longest non-empty string not from specified set; char *parameter required; string
is NUL-terminated

%
literal %; no assignment

int scanf(const char *format, ...);

scanf(f, ...) is equivalent to fscanf(stdin, f, ...)

int sscanf(char *s, const char *format, ...);

Like fscanf, but input read from string s.

int fgetc(FILE *stream);

Returns next character from (input) stream stream, or EOF on end-of-file or error.

char *fgets(char *s, int n, FILE *stream);

Copies characters from (input) stream stream to s, stopping when n-1 characters copied, newline
copied, end-of-file reached or error occurs. If no error, s is NUL-terminated. Returns NULL on
end-of-file or error, s otherwise.

int fputc(int c, FILE *stream);

Writes c, to stream stream. Returns c, or EOF on error.

char *fputs(const char *s, FILE *stream);

Writes s, to (output) stream stream. Returns non-negative on success or EOF on error.

int getc(FILE *stream);

Equivalent to fgetc except that it may be a macro.

int getchar(void);

Equivalent to getc(stdin).

char *gets(char *s);

Copies characters from stdin into s until newline encountered, end-of-file reached, or error occurs.
Does not copy newline. NUL-terminates s. Returns s, or NULL on end-of-file or error. Should
not be used because of the potential for buffer overflow.

int putc(int c, FILE *stream);

Equivalent to fputc except that it may be a macro.

int putchar(int c);

putchar(c) is equivalent to putc(c, stdout).

int puts(const char *s);

12

Writes s (excluding terminating NUL) and a newline to stdout. Returns non-negative on success,
EOF on error.

int ungetc(int c, FILE *stream);

Pushes c (which must not be EOF), onto (input) stream stream such that it will be returned by
the next read. Only one character of pushback is guaranteed (for each stream). Returns c, or
EOF on error.

size t fread(void *ptr, size t size, size t nobj, FILE *stream);

Reads (at most) nobj objects of size size from stream stream into ptr and returns number of
objects read. (feof and ferror can be used to check status.)

size t fwrite(const void *ptr, size t size, size t nobj, FILE *stream);

Writes to stream stream, nobj objects of size size from array ptr. Returns number of objects
written.

int fseek(FILE *stream, long offset, int origin);

Sets file position for stream stream and clears end-of-file indicator. For a binary stream, file posi-
tion is set to offset bytes from the position indicated by origin: beginning of file for SEEK SET,
current position for SEEK CUR, or end of file for SEEK END. Behaviour is similar for a text
stream, but offset must be zero or, for SEEK SET only, a value returned by ftell. Returns
non-zero on error.

long ftell(FILE *stream);

Returns current file position for stream stream, or -1 on error.

void rewind(FILE *stream);

Equivalent to fseek(stream, 0L, SEEK SET); clearerr(stream).

int fgetpos(FILE *stream, fpos t *ptr);

Stores current file position for stream stream in *ptr. Returns non-zero on error.

int fsetpos(FILE *stream, const fpos t *ptr);

Sets current position of stream stream to *ptr. Returns non-zero on error.

void clearerr(FILE *stream);

Clears end-of-file and error indicators for stream stream.

int feof(FILE *stream);

Returns non-zero if end-of-file indicator is set for stream stream.

int ferror(FILE *stream);

Returns non-zero if error indicator is set for stream stream.

void perror(const char *s);

Prints s (if non-null) and strerror(errno) to standard error as would:

fprintf(stderr, "%s: %s\n", (s != NULL ? s : ""), strerror(errno))

<stdlib.h>

EXIT FAILURE

Value for status argument to exit indicating failure.

EXIT SUCCESS

Value for status argument to exit indicating success.

13

RAND MAX

Maximum value returned by rand().

NULL

Null pointer constant.

div t

Return type of div(). Structure having members:

int quot;
quotient

int rem;
remainder

ldiv t Return type of ldiv(). Structure having members:

long quot;
quotient

long rem;
remainder

size t

Type for objects declared to store result of sizeof operator.

int abs(int n);

labs(long n);

Returns absolute value of n.

div t div(int num, int denom);

ldiv t ldiv(long num, long denom);

Returns quotient and remainder of num/denom.

double atof(const char *s);

Equivalent to strtod(s, (char **)NULL) except that errno is not necessarily set on conversion
error.

int atoi(const char *s);

Equivalent to (int)strtol(s, (char **)NULL, 10) except that errno is not necessarily set on con-
version error.

long atol(const char *s);

Equivalent to strtol(s, (char **)NULL, 10) except that errno is not necessarily set on conversion
error.

double strtod(const char *s, char **endp);

Converts initial characters (ignoring leading white space) of s to type double. If endp non-null,
stores pointer to unconverted suffix in *endp. On overflow, sets errno to ERANGE and returns
HUGE VAL with the appropriate sign; on underflow, sets errno to ERANGE and returns zero;
otherwise returns converted value.

long strtol(const char *s, char *endp, int base);

Converts initial characters (ignoring leading white space) of s to type long. If endp non-nu ll,
stores pointer to unconverted suffix in *endp. If base between 2 and 36, that base used for con-
version; if zero, leading (after any sign) 0X or 0x implies hexadecimal, leading 0 (after any sign)

14

implies octal, otherwise decimal assumed. Leading 0X or 0x permitted for base hexadecimal.
On overflow, sets errno to ERANGE and returns LONG MAX or LONG MIN (as appropriate
for sign); otherwise returns converted value.

unsigned long strtoul(const char *s, char **endp, int base);

As for strtol except result is unsigned long and value on overflow is ULONG MAX.

void *calloc(size t nobj, size t size);

Returns pointer to zero-initialised newly-allocated space for an array of nobj objects each of size
size, or NULL on error.

void *malloc(size t size);

Returns pointer to uninitialised newly-allocated space for an object of size size, or NULL on
error.

void *realloc(void *p, size t size);

Returns pointer to newly-allocated space for an object of size size, initialised, to minimum of
old and new sizes, to existing contents of p (if non-null), or NULL on error. On success, old
object deallocated, otherwise unchanged.

void free(void *p);

If p non-null, deallocates space to which it points.

void abort();

Terminates program abnormally, by calling raise(SIGABRT).

void exit(int status);

Terminates program normally. Functions installed using atexit are called (in reverse order to
that in which installed), open files are flushed, open streams are closed and control is returned to
environment. status is returned to environment in implementation-dependent manner. Zero or
EXIT SUCCESS indicates successful termination and EXIT FAILURE indicates unsuccessful
termination. Implementations may define other values.

int atexit(void (*fcm)(void));

Registers fcn to be called when program terminates normally (or when main returns). Returns
non-zero on failure.

int system(const char *s);

If s is not NULL, passes s to environment for execution, and returns status reported by command
processor; if s is NULL, non-zero returned if environment has a command processor.

char *getenv(const char *name);

Returns string associated with name name from implementation’s environment, or NULL if no
such string exists.

void *bsearch(const void *key, const void *base, size t n, size t size, int (*cmp)(const

void *keyval, const void *datum));

Searches ordered array base (of n objects each of size size) for item matching key according
to comparison function cmp. cmp must return negative value if first argument is less than
second, zero if equal and positive if greater. Items of base are assumed to be in ascending order
(according to cmp). Returns a pointer to an item matching key, or NULL if none found.

void qsort(void *base, size t n, size t size, int (*cmp)(const void*, const void*));

Arranges into ascending order array base (of n objects each of size size) according to comparison
function cmp. cmp must return negative value if first argument is less than second, zero if equal
and positive if greater.

15

int rand(void);

Returns pseudo-random number in range 0 to RAND MAX.

void srand(unsigned int seed);

Uses seed as seed for new sequence of pseudo-random numbers. Initial seed is 1.

<string.h>

NULL

Null pointer constant.

size t

Type for objects declared to store result of sizeof operator.

char *strcpy(char *s, const char *ct);

Copies ct to s including terminating NUL and returns s.

char *strncpy(char *s, const char *ct, size t n);

Copies at most n characters of ct to s. Pads with NUL characters if ct is of length less than n.
Note that this may leave s without NUL-termination. Return s.

char *strcat(char *s, const char *ct);

Concatenate ct to s and return s.

char *strncat(char *s, const char *ct, size t n);

Concatenate at most n characters of ct to s. NUL-terminates s and return it.

int strcmp(const char *cs, const char *ct);

Compares cs with ct, returning negative value if cs<ct, zero if cs==ct, positive value if cs>ct.

int strncmp(const char *cs, const char *ct, size t n);

Compares at most (the first) n characters of cs and ct, returning negative value if cs<ct, zero if
cs==ct, positive value if cs>ct.

int strcoll(const char *cs, const char *ct);

Compares cs with ct according to locale, returning negative value if cs<ct, zero if cs==ct,
positive value if cs>ct.

char *strchr(const char *cs, int c);

Returns pointer to first occurrence of c in cs, or NULL if not found.

char *strrchr(const char *cs, int c);

Returns pointer to last occurrence of c in cs, or NULL if not found.

size t strspn(const char *cs, const char *ct);

Returns length of prefix of cs which consists of characters which are in ct.

size t strcspn(const char *cs, const char *ct);

Returns length of prefix of cs which consists of characters which are not in ct.

char *strpbrk(const char *cs, const char *ct);

Returns pointer to first occurrence in cs of any character of ct, or NULL if none is found.

char *strstr(const char *cs, const char *ct);

Returns pointer to first occurrence of ct within cs, or NULL if none is found.

size t strlen(const char *cs);

16

Returns length of cs.

char *strerror(int n);

Returns pointer to implementation-defined message string corresponding with error n.

char *strtok(char *s, const char *t);

Searches s for next token delimited by any character from ct. Non-NULL s indicates the first
call of a sequence. If a token is found, it is NUL-terminated and returned, otherwise NULL is
returned. ct need not be identical for each call in a sequence.

size t strxfrm(char *s, const char *ct, size t n);

Stores in s no more than n characters (including terminating NUL) of a string produced from
ct according to a locale-specific transformation. Returns length of entire transformed string.

void *memcpy(void *s, const void *ct, size t n);

Copies n characters from ct to s and returns s. s may be corrupted if objects overlap.

void *memmove(void *s, const void *ct, size t n);

Copies n characters from ct to s and returns s. s will not be corrupted if objects overlap.

int memcmp(const void *cs, const void *ct, size t n);

Compares at most (the first) n characters of cs and ct, returning negative value if cs<ct, zero if
cs==ct, positive value if cs>ct.

void *memchr(const void *cs, int c, size t n);

Returns pointer to first occurrence of c in first n characters of cs, or NULL if not found.

void *memset(void *s, int c, size t n);

Replaces each of the first n characters of s by c and returns s.

<time.h>

CLOCKS PER SEC

The number of clock t units per second.

NULL

Null pointer constant.

clock t

An arithmetic type elapsed processor representing time.

time t

An arithmetic type representing calendar time.

struct tm

Represents the components of calendar time:

int tm sec;
seconds after the minute

int tm min;
minutes after the hour

int tm hour;
hours since midnight

int tm mday;

17

day of the month

int tm mon;
months since January

int tm year;
years since 1900

int tm wday;
days since Sunday

int tm yday;
days since January 1

int tm isdst;
Daylight Saving Time flag : is positive if DST is in effect, zero if not in effect, negative if
information not known.

Implementations may change field order and include additional fields.

clock t clock(void);

Returns elapsed processor time used by program or -1 if not available.

time t time(time t *tp);

Returns current calendar time or -1 if not available. If tp is non-NULL, return value is also
assigned to *tp.

double difftime(time t time2, time t time1);

Returns the difference in seconds between time2 and time1.

time t mktime(struct tm *tp);

If necessary, adjusts fields of *tp to fall withing normal ranges. Returns the corresponding
calendar time, or -1 if it cannot be represented.

char *asctime(const struct tm *tp);

Returns the given time as a string of the form:
Sun Jan 3 13:08:42 1988\n\0

char *ctime(const time t *tp);

Returns string equivalent to calendar time tp converted to local time. Equivalent to:
asctime(localtime(tp))

struct tm *gmtime(const time t *tp);

Returns calendar time *tp converted to Coordinated Universal Time, or NULL if not available.

struct tm *localtime(const time t *tp);

Returns calendar time *tp converted into local time.

size t strftime(char *s, size t smax, const char *fmt, const struct tm *tp);

Formats *tp into s according to fmt. Places no more than smax characters into s, and re-
turns number of characters produced (excluding terminating NUL), or 0 if greater than smax.
Formatting conversions (%c) are:

A
name of weekday

a
abbreviated name of weekday

18

B
name of month

b
abbreviated name of month

c
local date and time representation

d
day of month [01-31]

H
hour (24-hour clock) [00-23]

I
hour (12-hour clock) [01-12]

j
day of year [001-366]

M
minute [00-59]

m
month [01-12]

p
local equivalent of ”AM” or ”PM”

S
second [00-61]

U
week number of year (Sunday as 1st day of week) [00-53]

W
week number of year (Monday as 1st day of week) [00-53]

w
weekday (Sunday as 0) [0-6]

X
local time representation

x
local date representation

Y
year with century

y
year without century [00-99]

Z
name (if any) of time zone

%
%

Local time may differ from calendar time because of time zone.

19

